Effect of Mechanical Shear on the Structure of Carbon Black in Reinforced Elastomers

1970 ◽  
Vol 43 (5) ◽  
pp. 943-959 ◽  
Author(s):  
A. M. Gessler

Abstract The primary aggregate structure in high structure blacks is broken down when the blacks are milled in rubber. The breakdown, it is shown further, involves the disruption initially of more easily disrupted forces, and then subsequently of more difficultly disrupted forces. If the total structure breakdown is segmented accordingly, one finds that carbon blacks differ markedly in the proportion of the breakdown which occurs in each segment. But only the breakage of more difficultly disrupted structure is identified with chemical changes in the black and with concomitantly increased carbon—polymer interaction activity, i.e., with enhanced reinforcement. In studying the breakage of aggregate black structure which occurs when the blacks are milled in rubber, the following factors are considered: (1) Carbon Black Concentration: Breakage increases continuously, though not steadily, with carbon black concentration. This result is used to emphasize the merits of concentrated black masterbatching as the means for producing high quality products from SBR, BR, and EPDM rubbers. (2) Carbon Black Structure: Taking the total structure breakage over a broad range of carbon black concentrations, the extent of the breakage increases with the extent of the primary aggregate structure in the original black. (3) Polymer Viscosity or Molecular Weight: The extent to which breakage occurs on milling increases with the polymer viscosity or molecular weight. Since this result clearly cites the need for high shearing forces during milling, the severe limitations which must attend the use of plasticizing oils is implied. (4) Open Mill vs Banbury Mixing: The extent to which breakage occurs in the Banbury is significantly less than that on the two roll mill. Evidence is presented to show that this, clearly, is a temperature related result and, as in (3) above, that the magnitude of the shearing forces is the critical factor.

1995 ◽  
Vol 68 (5) ◽  
pp. 836-841 ◽  
Author(s):  
Qi Li ◽  
D. L. Feke ◽  
I. Manas-Zloczower

Abstract The dispersion of carbon black agglomerates in poly(dimethyl siloxane) (PDMS) has been studied experimentally. Both the structure of carbon black aggregates comprising the agglomerate and the presence of the matrix within the agglomerate were found to affect the mode of dispersion, critical stress conditions, and the kinetics of the dispersion process. Agglomerates of high structure carbon black are generally more difficult to disperse than agglomerates of low structure carbon black at the same agglomerate density. Depending on the degree of saturation of the agglomerate by PDMS, the dispersion process may be either enhanced or retarded compared to the dry state.


1968 ◽  
Vol 41 (5) ◽  
pp. 1256-1270 ◽  
Author(s):  
Gerard Kraus ◽  
J. T. Gruver

Abstract The molecular weight dependence of the adsorption of polybutadiene on carbon black from a poor solvent, n-heptane, and bulk, i.e., the phenomenon of “bound rubber”, was investigated. For narrow distribution polymers the adsorption is proportional to Mn, where n = 0.14 for adsorption from n-heptane solution; n = 0.5 for adsorption from bulk. Anomalously low solution adsorption was observed for polymers of very high molecular weight (> 500,000). This is ascribed to a sieve effect by aggregates of carbon black particles which cannot be penetrated by the large molecular coils. In high structure blacks, which pack more loosely, and in large particle blacks, which form larger interstices between particles, onset of anomalous adsorption is shifted toward higher molecular weights.


2012 ◽  
Vol 19 (01) ◽  
pp. 1250003
Author(s):  
JIAN CHEN ◽  
YONGZHONG JIN ◽  
JINGYU ZHANG ◽  
YAFENG WU ◽  
CHUNCAI MENG

Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene–butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30–50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island–rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.


1953 ◽  
Vol 26 (1) ◽  
pp. 102-114 ◽  
Author(s):  
I. M. Kolthoff ◽  
R. G. Gutmacher

Abstract The sorption capacities toward GR-S five commercial carbon blacks are in decreasing order: Spheron-6, Vulcan-1, Philblack-0, Sterling-105, Philblack-A. Apparently, the sorption is not related to surface area. The sorption on Vulcan-1 of GR-S from its solutions in seven different solvents or mixtures of solvents increases with decreasing solvent power for the rubber. The sorption curves of two “cold rubbers,” polymerized at −10 and +5° respectively, showed little difference from that of 50° GR-S. Previous heating of carbon black in nitrogen at 500 or 1100° increased the sorption by about 20 per cent over unheated carbon. Air-heating of carbon black at 425° did not cause a difference in the sorption from benzene solution, but produced an increase in the sorption of rubber from n-heptane solution. In the range 75% butadiene-25% styrene to 5% butadiene-95% styrene, there is practically no effect of the degree of unsaturation on the sorption. Polystyrene of high intrinsic viscosity exhibits a peculiar behavior with furnace blacks. Vulcan-1 sorbed microgel as well as the sol fraction from n-heptane solutions of GR-S containing microgel (conversion 74.7 and 81.5 per cent). There was no appreciable difference in the amount of sorption of rubber fractions having average molecular weights varying from 433,000 to 85,000. There is little change in the amount sorbed after two hours of shaking, but the intrinsic viscosity of the residual rubber decreases with time. The low molecular-weight rubber is sorbed more rapidly, but is slowly replaced by the more tightly sorbed high molecular weight fraction. Partial fractionation of a rubber sample can be achieved by allowing the rubber solution to flow through a column of weakly sorbing carbon black. A large portion of the sorbed rubber can be recovered from the column by washing it with a good solvent such as xylene. Bound rubber is produced by intimate mixing of equal parts of carbon black and rubber swollen in chloroform, when the mixture is dried in vacuum at 80° or at room temperature. Milling is not essential to get bound rubber.


2016 ◽  
Vol 89 (4) ◽  
pp. 653-670 ◽  
Author(s):  
Anu Mary Joseph ◽  
Benny George ◽  
Madhusoodanan K. N. ◽  
Rosamma Alex

ABSTRACTCarbon black filled natural rubber (NR) vulcanizates were devulcanized at ambient temperature in a two roll mill. The effect of cure system, that is, conventional vulcanization (CV), semiefficient vulcanization (semi EV), and efficient vulcanization (EV) systems, used for vulcanization of the original sample, on the efficiency of devulcanization was studied. The efficiency of devulcanization expressed as percentage devulcanization of the samples calculated from residual crosslink density measurements was correlated with the sol fraction of the devulcanized samples based on Horikx analysis. Using chemical probe analysis, we determined (i) the crosslink distribution pattern of the original sample, (ii) the extent to which the different types of crosslinks—that is, polysulfidic, disulfidic, and monosulfidic crosslinks—have been debonded or broken during the shearing process in the two roll mill, and (iii) the pattern of bond formation during revulcanization. Mechanical shearing predominantly breaks the majority crosslink type (polysulfidic crosslinks in CV and semi EV cure systems and disulfidic crosslinks in EV samples). Irrespective of the significant reduction in total crosslink density in all three sets of samples, chain shortening reactions similar to the post-crosslinking chemical reactions at curing temperatures also occur during mechanical shear at ambient conditions, which increased the absolute value of monosulfidic links in CV and semi EV systems. However, in the devulcanized EV system, the absolute value of polysulfidic crosslinks increased, which might be due to the re-crosslinking of the cleaved bonds. All the devulcanized samples were revulcanized, and the mechanical and morphological properties were analyzed. The percentage retention of the vulcanizate properties after revulcanization of the devulcanized samples correlated very well with efficiency of devulcanization.


1996 ◽  
Vol 5 (5) ◽  
pp. 096369359600500
Author(s):  
L. Rejón ◽  
R. Flores ◽  
M. A. Ponce ◽  
V.M. Castaño

The electrical performance (current, I vs. voltage, V) of a novel polymer-based composite, modified with varying amounts of carbon black, was studied. Distinctive regimens of the I vs. V curves, before and after a critical carbon black concentration, were found and the feasible mechanisms for such behaviour are discussed.


Sign in / Sign up

Export Citation Format

Share Document