scholarly journals Pathomorphological Changes In The Lungs Of COVID-19 Patients

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zeshan Ali

In December 2019, a novel virus was discovered in China causing severe acute respiratory distress syndrome and the virus was designated as SARS-CoV-2 [1]. On 11th March 2020, the Corona Virus (SARS-CoV-2) was declared a pandemic by World Health Organization (WHO) [2]. Millions of people worldwide have been affected by this virus [3]. Most of the patients shows mild symptoms. Severe cases lead to the death of patients due to severe respiratory failure. Multiple organ failure has been seen in many patients suffering from COVID-19

2021 ◽  
Vol 2 (1) ◽  
pp. 1-4
Author(s):  
Krisna Yuarno Phatama ◽  
Sholahuddin Rhatomy, MD ◽  
Asep Santoso ◽  
Nicolaas C. Budhiparama

At the end of 2019, we faced a new variant of the coronavirus that can cause pneumonia and acute respiratory distress syndrome-like symptoms. It started in Wuhan, Hubei Province, China, and spread quickly to the whole world.This new virus is called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can manifest as a disease called coronavirus disease 2019 (COVID-19). On March 13th, 2020 World Health Organization (WHO) declared COVID-19 as a global pandemic, and the story of frightening pandemic begin.


2020 ◽  
Vol 04 (01) ◽  
pp. 20-24
Author(s):  
Prachee Sathe ◽  
Vijay Sundar Singh

AbstractIn late 2019, China reported cases of respiratory illness in humans, which involved a novel Coronavirus SARS-CoV-2 (also known as 2019-nCoV). The World Health Organization (WHO) termed the disease COVID-19 (i.e., Coronavirus disease 2019). Most of the morbidity and mortality from COVID-19 is largely due to acute viral pneumonitis that leads to acute respiratory distress syndrome (ARDS). This article will discuss the clinical features of the multiorgan involvement in COVID-19 as well as the management of patients who become critically ill due to COVID-19.


Author(s):  
P. A. Brygin ◽  
S. V. Zhuravel ◽  
D. A. Troitskiy ◽  
I. I. Utkina

The purpose of this article is to describe the problem of predicting the lung function recovery in patients with extracorporeal membrane oxygenation for acute respiratory distress syndrome. Data from CESAR and EOLIA clinical trials on the efficacy of extracorporeal membrane oxygenation in patients with acute respiratory distress syndrome have been reviewed and some controversial results discussed. The prognostic PRESERVE and RESP scores developed as prognostic tools on the basis of the results of these studies, are presented, the limitations of their applicability in various forms of acute respiratory distress syndrome are discussed. We propose to subdivide the predictors of the extracorporeal membrane oxygenation outcome in patients with acute respiratory distress syndrome into 4 following groups: 1. Lung injury severity criteria, including parameters of their lung mechanical and functional properties. 2. Time from acute respiratory failure onset to extracorporeal membrane oxygenation initiation, which reflects the rate of pathological processes in lungs and timing of decision to initiate extracorporeal membrane oxygenation. 3. The etiology of pulmonary disorders, directly affecting the reversibility of pathological processes in the lungs. 4. The severity of the patient's general condition, including the severity of manifestations of multiple organ failure, the degree of decompensation of concomitant chronic diseases, including oncological and associated with immunosuppression. Several diseases are associated with a higher risk of specific complications, particularly hemorrhagic, during extracorporeal membrane oxygenation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Hua ◽  
Xin Zhang ◽  
Na Wang ◽  
Linyu Ran ◽  
Shengyun Wang ◽  
...  

Covid-19, Coronavirus disease 2019; ARDS, Acute respiratory distress syndrome; ECMO, Extracorporeal Membrane Oxygenation; WHO, World Health Organization; ICUs, Intensive care units. Acute respiratory distress syndrome (ARDS) is a fatal comorbidity of critically ill patients with COVID-19, who often end up on respiratory support. However, the safety and effectiveness of Extracorporeal Membrane Oxygenation (ECMO) in the treatment of COVID-19 remains to be elucidated at present. Here, we report on nine patients who received ECMO due to severe SARS-CoV-2 infection in Wuhan, China. Our initial experiences suggest that carefully selecting patients, as well as management by a well-trained team, are critical to implementing ECMO in patients with COVID-19. More randomized controlled trials with larger sample sizes are needed to evaluate the usefulness of ECMO in patients with COVID-19.


Author(s):  
Renat R. Gubaidullin ◽  
◽  
Aleksandr P. Kuzin ◽  
Vladimir V. Kulakov ◽  
◽  
...  

ntroduction. The COVID-19 pandemic caused an outbreak of viral lung infections with severe acute respiratory syndrome complicated with acute respiratory failure. Despite the fact that the pandemic has a lengthened run, none of the therapeutic approaches have proved to be sufficiently effective according to the evidence-based criteria. We consider the use of surfactant therapy in patients with severe viral pneumonia and acute respiratory distress syndrome (ARDS) as one of the possible methods for treating COVID-19 related pneumonia. Objective. To prove the clinical efficacy and safety of orally inhaled Surfactant-BL, an authorized drug, in the combination therapy of COVID-19 related ARDS. Materials and methods. A total of 38 patients with COVID-19 related severe pneumonia and ARDS were enrolled in the study. Of these, 20 patients received the standard therapy in accordance with the temporary guidelines for the prevention, diagnosis and treatment of the novel coronavirus infection (COVID-19) of the Ministry of Health of the Russian Federation, version 9. And 18 patients received the surfactant therapy in addition to the standard therapy. Surfactant-BL was used in accordance with the instructions on how to administer the drug for the indication – prevention of the development of acute respiratory distress syndrome. A step-by-step approach to the build-up of the respiratory therapy aggressiveness was used to manage hypoxia. We used oxygen inhalation via a face mask with an oxygen inflow of 5–15 l/min, highflow oxygen therapy via nasal cannulas using Airvo 2 devices, non-invasive lung ventilation, invasive lung ventilation in accordance with the principles of protective mechanical ventilation. Results and discussion. Significant differences in the frequency of transfers to mechanical ventilation, mortality, Intensive Care Unit (ICU) and hospitalization length of stay (p <0.05) were found between the groups. Patients receiving surfactant therapy who required a transfer to mechanical ventilation accounted for 22% of cases, and the mortality rate was 16%. In the group of patients receiving standard therapy without surfactant inhalation 45% were transferred to mechanical ventilation, and 35% died. For patients receiving surfactant therapy, the hospital stay was reduced by 20% on average, and ICU stay by 30%. Conclusion. The inclusion of surfactant therapy in the treatment of COVID-19 related severe pneumonia and ARDS can reduce the progression of respiratory failure, avoid the use of mechanical ventilation, shorten the ICU and hospitalization length of stay, and improve the survival rate of this patient cohort.


2021 ◽  
Vol 82 (6) ◽  
pp. 1-9
Author(s):  
M Gabrielli ◽  
F Valletta ◽  
F Franceschi ◽  

Ventilatory support is vital for the management of severe forms of COVID-19. Non-invasive ventilation is often used in patients who do not meet criteria for intubation or when invasive ventilation is not available, especially in a pandemic when resources are limited. Despite non-invasive ventilation providing effective respiratory support for some forms of acute respiratory failure, data about its effectiveness in patients with viral-related pneumonia are inconclusive. Acute respiratory distress syndrome caused by severe acute respiratory syndrome-coronavirus 2 infection causes life-threatening respiratory failure, weakening the lung parenchyma and increasing the risk of barotrauma. Pulmonary barotrauma results from positive pressure ventilation leading to elevated transalveolar pressure, and in turn to alveolar rupture and leakage of air into the extra-alveolar tissue. This article reviews the literature regarding the use of non-invasive ventilation in patients with acute respiratory failure associated with COVID-19 and other epidemic or pandemic viral infections and the related risk of barotrauma.


The outbreak of emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China has been brought to global attention and declared a pandemic by the World Health Organization (WHO) on March 11, 2020. In a recent study of Nanshan Chen et al., on patients of Wuhan Jinyintan Hospital, Wuhan, China, from the 99 patients with SARSCoV-2 infection, 51% had chronic diseases and they had symptoms of fever (83%), cough (82%) shortness of breath (31%), muscle ache (11%), fatigue (9%), headache (8%), sore throat (5%), rhinorrhea (4%), chest pain (2%), diarrhea (2%), and nausea and vomiting (1%) [1, 2]. The majority of patients can recover, however, about 25% of patients will progress into severe complications including acute respiratory distress syndrome (ARDS), which may worsen rapidly into respiratory failure, need an intensive care unit (ICU) and even cause multiple organ failure [3]. Depending on the pathophysiological mechanisms supposed to be involved in the development of the various clinical forms of the disease, various types of treatment have been tested with varying degrees of success. We have developed a nanotherapy to block the entry of the virus into the host cell, to reduce its potential for replication and to regulate the immune response against the microbial aggressor [4].


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Braira Wahid ◽  
Noshaba Rani ◽  
Muhammad Idrees

Abstract After wreaking havoc on a global level with a total of 5,488,825 confirmed cases and 349,095 deaths as of May 2020, severe acute respiratory syndrome coronavirus 2 is truly living up to the expectations of a 21st-century pandemic. Since the major cause of mortality is a respiratory failure from acute respiratory distress syndrome, the only present-day management option is supportive as the transmission relies solely on human-to-human contact. Patients suffering from coronavirus disease 2019 (COVID-19) should be tested for hyper inflammation to screen those for whom immunosuppression can increases chances of survival. As more and more clinical data surfaces, it suggests patients with mild or severe cytokine storms are at greater risk of failing fatally and hence these cytokine storms should be targets for treatment in salvaging COVID-19 patients.


BMJ ◽  
2020 ◽  
pp. m1091 ◽  
Author(s):  
Tao Chen ◽  
Di Wu ◽  
Huilong Chen ◽  
Weiming Yan ◽  
Danlei Yang ◽  
...  

Abstract Objective To delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) who died. Design Retrospective case series. Setting Tongji Hospital in Wuhan, China. Participants Among a cohort of 799 patients, 113 who died and 161 who recovered with a diagnosis of covid-19 were analysed. Data were collected until 28 February 2020. Main outcome measures Clinical characteristics and laboratory findings were obtained from electronic medical records with data collection forms. Results The median age of deceased patients (68 years) was significantly older than recovered patients (51 years). Male sex was more predominant in deceased patients (83; 73%) than in recovered patients (88; 55%). Chronic hypertension and other cardiovascular comorbidities were more frequent among deceased patients (54 (48%) and 16 (14%)) than recovered patients (39 (24%) and 7 (4%)). Dyspnoea, chest tightness, and disorder of consciousness were more common in deceased patients (70 (62%), 55 (49%), and 25 (22%)) than in recovered patients (50 (31%), 48 (30%), and 1 (1%)). The median time from disease onset to death in deceased patients was 16 (interquartile range 12.0-20.0) days. Leukocytosis was present in 56 (50%) patients who died and 6 (4%) who recovered, and lymphopenia was present in 103 (91%) and 76 (47%) respectively. Concentrations of alanine aminotransferase, aspartate aminotransferase, creatinine, creatine kinase, lactate dehydrogenase, cardiac troponin I, N-terminal pro-brain natriuretic peptide, and D-dimer were markedly higher in deceased patients than in recovered patients. Common complications observed more frequently in deceased patients included acute respiratory distress syndrome (113; 100%), type I respiratory failure (18/35; 51%), sepsis (113; 100%), acute cardiac injury (72/94; 77%), heart failure (41/83; 49%), alkalosis (14/35; 40%), hyperkalaemia (42; 37%), acute kidney injury (28; 25%), and hypoxic encephalopathy (23; 20%). Patients with cardiovascular comorbidity were more likely to develop cardiac complications. Regardless of history of cardiovascular disease, acute cardiac injury and heart failure were more common in deceased patients. Conclusion Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk. Acute respiratory distress syndrome and respiratory failure, sepsis, acute cardiac injury, and heart failure were the most common critical complications during exacerbation of covid-19.


Perfusion ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 100-102
Author(s):  
Pauline H Go ◽  
Albert Pai ◽  
Sharon B Larson ◽  
Kalpaj Parekh

Iatrogenic tracheal injuries are rare but potentially serious complications of endotracheal intubation that frequently require lung isolation to repair. This is not tolerated in patients with severe respiratory failure. We describe a case in a patient with acute respiratory distress syndrome, repaired using veno-venous extracorporeal membrane oxygenation.


Sign in / Sign up

Export Citation Format

Share Document