scholarly journals Integrated modeling of the peer-to-peer markets in the energy industry

2022 ◽  
Vol 13 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Gonzalo E. Alvarez

Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving.

2021 ◽  
Vol 40 (5) ◽  
pp. 10043-10061
Author(s):  
Xiaoping Shi ◽  
Shiqi Zou ◽  
Shenmin Song ◽  
Rui Guo

 The asset-based weapon target assignment (ABWTA) problem is one of the important branches of the weapon target assignment (WTA) problem. Due to the current large-scale battlefield environment, the ABWTA problem is a multi-objective optimization problem (MOP) with strong constraints, large-scale and sparse properties. The novel model of the ABWTA problem with the operation error parameter is established. An evolutionary algorithm for large-scale sparse problems (SparseEA) is introduced as the main framework for solving large-scale sparse ABWTA problem. The proposed framework (SparseEA-ABWTA) mainly addresses the issue that problem-specific initialization method and genetic operators with a reward strategy can generate solutions efficiently considering the sparsity of variables and an improved non-dominated solution selection method is presented to handle the constraints. Under the premise of constructing large-scale cases by the specific case generator, two numerical experiments on four outstanding multi-objective evolutionary algorithms (MOEAs) show Runtime of SparseEA-ABWTA is faster nearly 50% than others under the same convergence and the gap between MOEAs improved by the mechanism of SparseEA-ABWTA and SparseEA-ABWTA is reduced to nearly 20% in the convergence and distribution.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2140 ◽  
Author(s):  
Sofana Reka. S ◽  
Tomislav Dragičević ◽  
Pierluigi Siano ◽  
S.R. Sahaya Prabaharan

Wireless cellular networks are emerging to take a strong stand in attempts to achieve pervasive large scale obtainment, communication, and processing with the evolution of the fifth generation (5G) network. Both the present day cellular technologies and the evolving new age 5G are considered to be advantageous for the smart grid. The 5G networks exhibit relevant services for critical and timely applications for greater aspects in the smart grid. In the present day electricity markets, 5G provides new business models to the energy providers and improves the way the utility communicates with the grid systems. In this work, a complete analysis and a review of the 5G network and its vision regarding the smart grid is exhibited. The work discusses the present day wireless technologies, and the architectural changes for the past years are shown. Furthermore, to understand the user-based analyses in a smart grid, a detailed analysis of 5G architecture with the grid perspectives is exhibited. The current status of 5G networks in a smart grid with a different analysis for energy efficiency is vividly explained in this work. Furthermore, focus is emphasized on future reliable smart grid communication with future roadmaps and challenges to be faced. The complete work gives an in-depth understanding of 5G networks as they pertain to future smart grids as a comprehensive analysis.


Author(s):  
Yanfen Liao ◽  
Jiejin Cai ◽  
Xiaoqian Ma

The optimum unit commitment is to determine an optimal scheme which can minimize the system operating cost during a period while the load demand, operation constrains of the individual unit are simultaneously satisfied. Since it is characterized as a nonlinear, large scale, discrete, mixed-integer combinatorial optimization problem with constrains, it is always hard to find out the theoretical optimal solution. In this paper, a method combining the priority-order with dynamic comparison is brought out to obtain an engineering optimal solution, and is validated in a power plant composed of three 200MW and two 300MW units. Through simulating the on-line running datum from the DCS system in the power plant, the operating cost curves are obtained in different units, startup/shut-down mode and load demand. According to these curves, an optimum unit commitment model is established based on equal incremental rate principle principle. Make target function be minimum gross coal consumption, the results show that compared with the duty-chief-mode that allocates the load based on operators’ experience, the units’ mean gross coal consumption rate is reduced about 0.5g/(kW·h) when operating by this unit commitment model, and its economic profit is far more than the load economic allocation model that doesn’t considered the units’ start-up/shut-down.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Hasan Ansari ◽  
Vahid Tabatab Vakili ◽  
Behnam Bahrak

AbstractWith the rapid development of smart grids and increasing data collected in these networks, analyzing this massive data for applications such as marketing, cyber-security, and performance analysis, has gained popularity. This paper focuses on analysis and performance evaluation of big data frameworks that are proposed for handling smart grid data. Since obtaining large amounts of smart grid data is difficult due to privacy concerns, we propose and implement a large scale smart grid data generator to produce massive data under conditions similar to those in real smart grids. We use four open source big data frameworks namely Hadoop-Hbase, Cassandra, Elasticsearch, and MongoDB, in our implementation. Finally, we evaluate the performance of different frameworks on smart grid big data and present a performance benchmark that includes common data analysis techniques on smart grid data.


2021 ◽  
Vol 1 ◽  
pp. 128
Author(s):  
Nikolaos Efthymiopoulos ◽  
Prodromos Makris ◽  
Georgios Tsaousoglou ◽  
Konstantinos Steriotis ◽  
Dimitrios J. Vergados ◽  
...  

The FLEXGRID project develops a digital platform designed to offer Digital Energy Services (DESs) that facilitate energy sector stakeholders (i.e. Distribution System Operators - DSOs, Transmission System Operators - TSOs, market operators, Renewable Energy Sources - RES producers, retailers, flexibility aggregators) towards: i) automating and optimizing the planning and operation/management of their systems/assets, and ii) interacting in a dynamic and efficient way with their environment (electricity system) and the rest of the stakeholders. In this way, FLEXGRID envisages secure, sustainable, competitive, and affordable smart grids. A key objective is the incentivization of large-scale bottom-up investments in Distributed Energy Resources (DERs) through innovative smart grid management. Towards this goal, FLEXGRID develops innovative data models and energy market architectures (with high liquidity and efficiency) that effectively manage smart grids through an advanced TSO-DSO interaction as well as interactions between Transmission Network and Distribution Network level energy markets. Consequently, and through intelligence that exploits the innovation of the proposed market architecture, FLEXGRID develops investment tools able to examine in depth the emerging energy ecosystem and allow in this way: i) the financial sustainability of DER investors, and ii) the market liquidity/efficiency through advanced exploitation of DERs and intelligent network upgrades.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3818
Author(s):  
Sergio Potenciano Menci ◽  
Julien Le Baut ◽  
Javier Matanza Domingo ◽  
Gregorio López López ◽  
Rafael Cossent Arín ◽  
...  

Information and Communication Technology (ICT) infrastructures are at the heart of emerging Smart Grid scenarios with high penetration of Distributed Energy Resources (DER). The scalability of such ICT infrastructures is a key factor for the large scale deployment of the aforementioned Smart Grid solutions, which could not be ensured by small-scale pilot demonstrations. This paper presents a novel methodology that has been developed in the scope of the H2020 project InteGrid, which enables the scalability analysis of ICT infrastructures for Smart Grids. It is based on the Smart Grid Architecture Model (SGAM) framework, which enables a standardized and replicable approach. This approach consists of two consecutive steps: a qualitative analysis that aims at identifying potential bottlenecks in an ICT infrastructure; and a quantitative analysis of the identified critical links under stress conditions by means of simulations with the aim of evaluating their operational limits. In this work the proposed methodology is applied to a cluster of solutions demonstrated in the InteGrid Slovenian pilot. This pilot consists of a Large Customer Commercial Virtual Power Plant (VPP) that provides flexibility in medium voltage for tertiary reserve and a Traffic Light System (TLS) to validate such flexibility offers. This approach creates an indirect Transmission System Operator (TSO)—Distribution System Operator (DSO) coordination scheme.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1839
Author(s):  
Alaa Alaerjan ◽  
Dae-Kyoo Kim ◽  
Hua Ming ◽  
Hwimin Kim

Data Distribution Service (DDS) has emerged as a potential solution for data communication challenges in smart grids. DDS is designed to support quality communication for large scale real-time systems through a wide range of QoS policies. However, a smart grid involves various types of communication applications running on different computing environments. Some environments have limited computing resources such as small memory and low performance, which makes it difficult to accommodate DDS. In this paper, we present a feature-based approach for tailoring DDS to configure lightweight DDS by selecting only the necessary features for the application in consideration of the resource constraints of its running environment. This allows DDS to serve as a uniform communication middleware across the smart grid, which is critical for interoperability. We analyze DDS in terms of features and design them using Unified Modeling Language (UML) and Object Constraint Language (OCL) based on inheritance and overriding. We define a formal notion of feature composition to build DDS configurations. We implemented the approach in OpenDDS and demonstrate its application to different application environments. We also experimented the approach for the efficiency of configured DDS in terms of resource utilization. The results show that configured DDS is viable for efficient and quality data communication for applications that run on an environment with limited computing capability.


2012 ◽  
Vol 614-615 ◽  
pp. 1885-1889
Author(s):  
Yi Ming Lu ◽  
Dong Liu ◽  
Wen Peng Yu

The common information model (CIM) is crucial to the Smart Grid. However, its updates always cause the unmatched data mapping and model ontology confusion among integrated systems because of the ambiguous and unintuitive CIM update processes. The CIM meta-model was specifically designed to solve these problems. Its XSD-based ontology consisted of basic modeling steps and process information that bridged the gap among CIM UML/RDFS/RDF in compliance with the IEC 61968 standard. The corresponding scheme and application scenarios also presented to support the novel model transformation between different versions of the CIM for data integration.


2018 ◽  
Vol 173 ◽  
pp. 02025
Author(s):  
Wen Tian

With the development of science and technology and the increasing emphasis on renewableenergy, smart grids are being vigorously developed in many countries and regions including Europe, theUnited States and China. The smart grid is the main practice trend of efficient transmission of modernpower resources. It has the advantages of good power transmission, low resource loss and strong correlationof resources transmission. Therefore, it occupies an important position in large-scale utilization of powerresources. Thus, this paper, based on the theory of smart grid, discusses the research direction, practicalinnovation and application of smart grid, provides theoretical reference for the comprehensive utilization ofpower resources in China, and promotes the intelligent exploration of domestic electric resource application.


Sign in / Sign up

Export Citation Format

Share Document