Formulation and Evaluation of Mouth Dissolving Tablet of Benazepril Hydrochloride

Author(s):  
Vani H. Bhargava ◽  
Poonam S. Sable ◽  
Deepak A. Kulkarni ◽  
Geeta P. Darekar

Antihypertensive drugs are expected to give quicker action with better bioavailability. In the present study, mouth dissolving tablets of Benazepril Hydrochloride were formulated by using direct compression technique employing combination of a superdisintegrants to achieve rapid disintegration of the tablets in oral cavity Croscarmellose sodium, sodium starch glycolate and crospovidone were used as superdisintegrant to prepare six batches of mouth dissolving tablets out of which tablets prepared from crospovidone showed best results. Drug and physical mixture was characterized by FTIR for compatibility study. Optimization technique was employed to predict the best formulation of all the combinations prepared. Prepared formulations were optimized and evaluated for wetting time, dispersion time and different quality parameters. Optimized formulation was compared with marketed formulation for in vitro drug release and it was found that mouth dissolving tablet shows efficient drug release.

2021 ◽  
Vol 20 (1) ◽  
pp. 19-29
Author(s):  
Nilima A Thombre ◽  
Pradeep S Ahire ◽  
Sanjay J Kshirsagar

In the current investigations, mouth dissolving tablets (MDT) were developed by applying quality by design (QbD) approach. Direct compression method was applied for the preparation of MDT containing aspirin using 32 factorial design with quantity of drug, microcrystalline cellulose (MCC) and crosscarmellose sodium (CCS) as dependant variables. MCC and CCS were used as superdisintegrants. Sodium stearyl fumarate was used as lubricant. Developed MDT were evaluated for characteristics like hardness, friability, disintegration time (DT) and in vitro drug release . Design Expert 11.0 described adequately impact of selected variables (MCC and CCS) at various levels for response under study (DT and friability). The optimized batch showed disintegration time of 15-28 secs, friability within 1% and in vitro drug release of 75-98% after 30 mins, respectively. The present study of experimental design revealed that MCC and CCS are fruitful at low concentration to develop the optimized formulation. As per the results obtained from the experiments, it can be concluded that QbD is an effective and efficient approach for the development of quality into MDT with the application of QTPP, risk assessment and critical quality attributes (CQA). Dhaka Univ. J. Pharm. Sci. 20(1): 19-29, 2021 (June)


Author(s):  
Yella Sirisha ◽  
Gopala Krishna Murthy T E ◽  
Avanapu Srinivasa Rao

 Objective: The present research work is an attempt to determine the effect of various diluents and superdisintegrants on drug release of eletriptan orodispersible tablets and designs an optimized formulation using 22 factorial design. Further, evaluate the tablets for various pre-compression and post-compression parameters.Methods: The drug excipient compatibility study was conducted by infrared spectroscopy, differential scanning colorimetry and X-ray diffraction studies were conducted to test the purity of the drug. The tablets were formulated by direct compression method using spray dried lactose, mannitol, microcrystalline cellulose, starch as diluents and crospovidone, croscarmellose sodium, and sodium starch glycolate as superdisintegrants. The powder formulations were evaluated for pre-compression parameters such as bulk density, tapped density, Carr’s Index, Hausner’s ratio, and angle of repose. The tablets were evaluated for post-compression parameters such as the hardness, thickness, friability, weight variation, and disintegrating time in the oral cavity, in vitro drug release kinetics studies, and accelerated stability studies. The formulations were optimized by 22 factorial design.Results: The drug and excipients were compatible, and no interaction was found. The drug was pure, and all the pre-compression parameters were within Indian Pharmacopoeial Limits. Post-compression parameters were also within limits. The disintegration time was found to be 27 s for the formulation F29 containing Croscarmellose sodium (5%) and Mannitol as diluent, and in vitro drug release was found to be 99.67% in 30 min and follows first-order kinetics. This was also the optimized formulation by 22 factorial design with a p=0.013.Conclusion: The orodispersible tablets of eletriptan were successfully formulated, and the optimized formulation was determined that can be used in the treatment of migraine.


Author(s):  
MEGHAWATI R. BADWAR ◽  
SANDHYA L. BORSE ◽  
MANISH S. JUNAGADE ◽  
ANIL G. JADHAV

Objective: The main objective of this research work was to formulate and evaluate the mouth dissolving tablet of amlodipine besylate for the treatment of hypertension and coronary artery disease. Methods: In this study, mouth dissolving tablet were prepared by direct compression method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content. Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like phosphate buffer pH 6.8, methanol was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F9 shows disintegration time up to 22±1.12 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 2, 3, 4, 5 min. The F9 shows drug release 100.22±1.08%. Accelerated stability study of optimized formulation (F9) up to 2 mo showed there was no change in disintegration time and percentage drug release. Conclusion: The results obtained in the research work clearly showed a promising potential of mouth dissolving tablets containing a specific ratio of croscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension and coronary artery disease.


2019 ◽  
Vol 9 (1) ◽  
pp. 95-102
Author(s):  
Afroza Akbar Patel ◽  
Siraj N Shaikh ◽  
Huzaifa Patel ◽  
Afzal Band ◽  
Ahmed Shaoor

The aim of this research work was to design develop & evaluate oral fast disintegrating tablets of Ranitidine HCL. The Orodispersible tablets of Ranitidine HCl were prepared by using direct Compression technique with a Synthetic Superdisintegrant such as Crosspovidone and a natural Superdisintegrant Fenugreek gum in different concentration. 32 factorial designs was applied to study the effect of independent variables,  concentration of Crosspovidone & Fenugreek gum on dependent variables like Cumulative % Drug release and Disintegration time by using design expert software. Prepared oral fast disintegrating tablets evaluated for Pre and Post-compression parameters. The prepared tablets exhibited satisfactory physico-chemical characterise especially fast disintegration & dissolution property. Full factorial design and optimization technique successfully used in the development oral fast disintegrating tablets. Comparing the all the formulations, formulation F9 was considered as optimized formulation which shows excellent fast disintegration, in vitro dissolution, and faster drug release within 6 min in comparison to other batches also stable in stability study. Keywords:  Fast disintegrating, Ranitidine, Crosspovidone, Gum, Optimizations, Water absorption ratio


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (09) ◽  
pp. 55-57
Author(s):  
T. S Vishnu ◽  
◽  
A. Dubey ◽  
G.S Ravi ◽  
S. Hebbar

The objective of this study was to design and investigate the antifungal activity of proniosomal gel of eugenol for the treatment of oral candidiasis. The proniosomal gel was prepared by coacervation phase separation method using different surfactants like spans 20, 60, 80, soya lecithin and cholesterol. The proniosomal gel formulations were evaluated for visual inspection, pH detection, viscosity, spreadability, in vitro drug release and kinetics study, and in vivo studies. The compatibility study indicated that the drug and the excipients were compatible with each other. The results showed that pH, viscosity and spreadability were all acceptable for topical preparation. In vitro drug release study and drug release kinetics were conducted to check the release study and drug release patterns of the formulation. Amongst the formulations, an optimized formulation was selected to conduct an in vivo study. Candida albicans was used to induce oral candidiasis for the evaluation of therapeutic efficacy of proniosomal gel in immunosuppressed rats. Activity was analysed by microbiological and histopathological techniques and was compared with the marketed product. It is evident from the study that the proniosomal gel shows sustained release trend with strong antifungal activity.


Author(s):  
DIKSHA SHARMA ◽  
SHAWETA AGARAWAL

Objective: The objective of the study was to aiming to formulate and evaluate temperature based in situ nasal gel of sertraline HCL. Materials and Methods: Preformulation studies of sertraline hydrochloride including tests for identification, solubility studies, Fourier-transformer infrared (FTIR) spectroscopy, melting point determination, and other studies were carried out and compared with the specification as per literature. The solubility of sertraline hydrochloride was determined in different solvents such as in distilled water, ethanol, acetone, isopropyl alcohol, and 2-propanol. Each value for solubility was determined in triplicate and average values were reported. The drug excipient compatibility study was determined by FTIR. Thermal analysis was performed using a differential scanning calorimetric equipped with a computerized data station. The UV spectrum of sertraline hydrochloride was obtained using UV JascV630. The in situ gel formulation was prepared by changing the concentration and using only one polymer (Carbopol 934) has been used at the same concentration. Mucoadhesive strength and in vitro permeation study were determined using gout nasal mucosal membrane, whereas in vitro drug release study was carried out using diffusion cell through egg membrane as a biological membrane. The stability studies were conducted according to ICH guidelines. Results: The FTIR studies of formulation show no interaction between drug and excipient. In situ gel was prepared using Carbopol 934 and Poloxamer 407 to improve its adhesion property. The optimized formulation (F6) was transparent and clear in appearance with 101.15% drug content. The sol-gel transformation of in situ gel was found at temperature 34.92°C with immediate gelation property. The in vitro drug release of optimized formulation was found 95.80% drug release in 8 h. Formulations F4 and F6 showed immediate gelation within 60 s and remained stable for an extended period. All the formulations were liquid at room temperature and underwent rapid gelation on contact with simulated nasal fluid. Conclusion: The results concluded that the formulations of in situ nasal gel showing to improve the bioavailability through its longer residence time and ability to sustain drug release.


Author(s):  
Pavithra K

Objective: The main purpose of this study was to develop a topical delivery of itraconazole to reduce the dose of the drug, to improve patient compliance, and to avoid the side effects. Itraconazole is a triazole derivative to treat antifungal and antiprotozoal infections. Methods: Topical gel formulations of itraconazole were prepared using Carbopol 940 as a gelling agent with different concentrations. Four different formulations were prepared and evaluated with respect to color, spreadability, viscosity measurement, determination of pH, drug content, in vitro drug release studies, zeta potential studies, and stability studies. Compatibility study was carried out by Fourier-transform infrared (FT-IR) spectral analysis. Results: FT-IR study revealed that there were no significant interaction between the drug and polymers. All the prepared formulations show acceptable physical properties. The drug content and percentage yield were higher for F1 formulation among all formulation F1 shows better drug release. Stability study of best formulation shows that there was no difference in drug content and in vitro drug release studies. Conclusion: From the above observation results that this formulation may be more encouraging topical substitute for the healing of fungal infections in the skin.


Author(s):  
MILIND J. AMIN ◽  
KEYUR S. PATEL ◽  
DEEPA R. PATEL ◽  
ZIL P. PATEL ◽  
JAYANTI V. BAJAG

Objective: The aim of the study was to develop sustained release pellets of lornoxicam using Eudragit RLPO and Eudragit RSPO to reduce the dosing frequency. Methods: The sustained release pellets of lornoxicam were prepared by extrusion–spheronization technique using Eudragit RLPO and Eudragit RSPO as release retardant polymers and microcrystalline cellulose as spheronizing agent. A 32 Full factorial design was applied to investigate the combined effect of the two independent variables i.e. concentration of Eudragit RLPO (X1) and concentration of Eudragit RSPO (X2) on the dependent variables, In vitro drug release at 1h (Y1), In vitro drug release at 4 h (Y2) and In vitro drug release at 12 h. (Y3). Results: The optimized formulation (F0) show in vitro drug release 11.24±1.21 %, 43.69±1.28 %, 82.69±1.74 % and 100.24±1.56 % at 1 h, 4 h, 12 h and 24 h respectively. Drug excipients compatibility study by FTIR showed no interaction between drug and excipients. Eudragit RLPO and Eudragit RSPO had a significant effect on in vitro drug release. Conclusion: From all parameters and experimental design evaluation, it was concluded that the drug release rate decreased with an increase the concentration of Eudragit RLPO and Eudragit RSPO. SEM Photomicrograph of pellets revealed that the surface was rough and the pellets were spherical shaped in nature. The in vitro release kinetics revealed higuchi model is followed and drug release is by anamolous diffusion.


Author(s):  
Bhumika Mangla ◽  
Anurekha Jain ◽  
Deepinder Singh Malik

Aim:: To formulate and preliminary evaluated polysaccharide based mucoadhesive floating tablets of Cinnarizine. Background:: Gastro-retentive drug delivery systems has proved to be a successful approach to enhance the gastric residence with site specific targeting for achieving local or generalized effect. Various patents has also been filed globally employing gastro-retentive approach. Objective:: The study is designed to explore the mucoadhesive and low density characteristics of corn fibre gum (CFG) for preparation of gastro-retentive floating tablets of cinnarizine. Methods:: Floating tablets were prepared by direct compression technique using different concentrations of CFG (45, 50, 60% w/w). The formulated floating tablet batches were evaluated for their hardness, friability, drug content, floating duration/ lag time, swelling behavior, bioadhesive strength and in vitro drug release. Results:: Mucoadhesive strength was found to increase with an increment in the polysaccharide concentration. Swelling index was found to increase both with the increase in CFG concentration and with duration for which tablet remains in medium. The in vitro drug release studies indicated decrease in drug release (91% to 77%) with the increase in polymer concentration. The release data was further fitted to various kinetic models which revealed the drug release to be in accordance with Zero-order and Higuchi models, indicating polymer to exhibit the swellable matrix forming abilities. The value of n (between 0.458 and 0.997) from Korsemeyer Peppas model depicted the possibility of drug to follow more than one mechanism of release from the formulation i.e. diffusion and erosion. Stability studies revealed the preparations to retain their integrity and pharmaceutical characteristics at variable storage conditions. Conclusion:: Thus from the research findings, CFG could be concluded to possess potential binder, release retardant and mucoadhesive characteristics which could be successfully employed for the formulation of gastro-retentive floating tablets.


Sign in / Sign up

Export Citation Format

Share Document