A Logical Approach to Development of Natamycin Loaded NLCs: Preformulation Studies, Formulation Development and In Vitro Characterization

Author(s):  
Ishwari Choudhary ◽  
Preeti K. Suresh

This study was aimed at the development of natamycin loaded nano-structured lipid carriers (NLCs) and their characterization for physicochemical properties i.e., Fourier Transform Infrared (FTIR), UV-Visible spectroscopy, meting point, solubility profile and partition coefficient. FTIR and Differential Scanning Calorimetry (DSC) permit the characterization of the drug, excipients and binary mixture and thus assisted in predicting the compatibility of natamycin with other excipients. Lipid screening for formulation of NLCs were performed by their solubility and drug affinity studies. High homogenization and sonication method was employed for the development of natamycin loaded NLCs and it was characterized for vesicle size, zeta potential, % entrapment efficiency, viscosity, pH and percentage drug release up to 12 h.

2021 ◽  
Author(s):  
Poournima Patil ◽  
Suresh Killedar

Abstract The current work was addressed to characterize gallic acid from amla fruit and quercetin from peels of pomegranate fruit and formulated into Chitosan (CS) nanoparticles and to evaluate their cytotoxicity towards human colorectal cancer (HCT 116) cell lines for the treatment of DMH induced colorectal cancer in Wistar rats. Identification of the biomolecules was performed by using different chromatographic and spectroscopic techniques, as 1H-NMR, GC-MS, LC-MS and HPTLC. Characterization of CS nanoparticles carried out by using X- ray diffraction (XRD) Differential scanning calorimetry (DSC), Scanning Electron Microscope (SEM), entrapment efficiency and In vitro drug release confirmed successful encapsulation of biomolecules into CS nanoparticles. A significant change in aberrant crypt foci (ACF) in CS nanoparticles compared to polyherbal extract were observed, with decrease in the colonic glutathione, catalase and superoxide dismutase levels and values differed significantly (P < 0.005).


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3139 ◽  
Author(s):  
Pradeep Kumar Bolla ◽  
Carlos A. Meraz ◽  
Victor A. Rodriguez ◽  
Isaac Deaguero ◽  
Mahima Singh ◽  
...  

Global incidence of superficial fungal infections caused by dermatophytes is high and affects around 40 million people. It is the fourth most common cause of infection. Clotrimazole, a broad spectrum imidazole antifungal agent is widely used to treat fungal infections. Conventional topical formulations of clotrimazole are intended to treat infections by effective penetration of drugs into the stratum corneum. However, drawbacks such as poor dermal bioavailability, poor penetration, and variable drug levels limit the efficiency. The present study aims to load clotrimazole into ufosomes and evaluate its topical bioavailability. Clotrimazole loaded ufosomes were prepared using cholesterol and sodium oleate by thin film hydration technique and evaluated for size, polydispersity index, and entrapment efficiency to obtain optimized formulation. Optimized formulation was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Skin diffusion studies and tape-stripping were performed using human skin to determine the amount of clotrimazole accumulated in different layers of the skin. Results showed that the optimized formulation had vesicle size <250 nm with ~84% entrapment efficiency. XRD and DSC confirmed the entrapment of clotrimazole into ufosomes. No permeation was observed through the skin up to 24 h following the permeation studies. Tape-stripping revealed that ufosomes led to accumulation of more clotrimazole in the skin compared to marketed formulation (Perrigo). Overall, results revealed the capability of ufosomes in improving the skin bioavailability of clotrimazole.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Cemil Alkan ◽  
Leyla Aras ◽  
Güngör Gündüz

Abstract A novel type of phthalocyanine polymer, 1,4-diazophenylene-bridged Cuphthalocyanine, was prepared from the diazonium salt of diaminobenzene and Cu(II) 1,8,15,22-tetraaminophthalocyanine. The polymer is partially soluble in tetrahydrofuran, dichloromethane, and dimethylformamide. Characterization of the polymer was performed by IR and UV-visible spectroscopy, X-ray diffraction, ash analysis, viscometry, differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the soluble part of the polymer was determined by ebullioscopy. Electrical conductivity of the polymer and its doped samples were determined by the 4-probe technique. It was found that the electrical conductivity increased up to 10-4 S/cm after doping. The redox behaviour of the polymer was investigated utilizing cyclic voltammetry.


Sign in / Sign up

Export Citation Format

Share Document