A Review Over the effect of Heavy Metal in Metabolism of Brassica juncea (L.) and Myristica fragrans

Author(s):  
Vanktesh Kumar ◽  
Navjot Kaur ◽  
Pankaj Wadhwa

Brassica juncea (L.) and Myristica fragrans are common plants found in India where the concentration of heavy metals in water and soil is observed more frequently and in sufficient amounts to cause bad effects to the living entity. In plants various kinds of bad effects such as dwarfness, yellowish leaves, dead leaves, brownish and dead stem. These are kinds of symptoms that one can observe in plants suffering from the bad effects of heavy metal absorption. At a specific time, they should be identified and treated for the same otherwise this may cause an increase in dead material in the plant, day by day. This review summarizes the bad effects of heavy metals in plants like these two.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Nandita Sarker ◽  
Muhammed Alamgir Zaman Chowdhury ◽  
Abu Naieum Muhammad Fakhruddin ◽  
Zeenath Fardous ◽  
Mohammed Moniruzzaman ◽  
...  

The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.


2019 ◽  
pp. 152808371987127 ◽  
Author(s):  
Subhankar Maity ◽  
Ashish Dubey ◽  
Supriyo Chakraborty

With the development of industrialization and human activities, discharge of waste water containing heavy metals in the environment is increasing day by day. It causes serious threats to the human civilization and the flora and fauna in this earth. Conducting polymers like polypyrrole and polyaniline can be used for treating wastewater due to their inherent ion absorption properties. This article has been focused on the development of polypyrrole coated bio-composites and their potential about the removal of heavy metals from industrial wastewater. Adsorption process can be successfully employed to remove heavy metals from the wastewater by the treatment of water with polypyrrole-coated composites. It was reported in literature that the polypyrrole and polyaniline-coated adsorbents had good adsorption capacities for Mg, Fe, Cu, Cd, Pb, Zn, and Ni. Polypyrrole-coated saw dust, rice husk, chitin, and cellulosic materials could be able to remove Cr, Fe, Cu, and Zn from wastewater. This method would be a replacement for costly conventional methods of removing heavy metal ions from wastewater. It is expected that this method would be an alternative for waste water treatment which will benefit the industries in future.


2013 ◽  
Vol 41 (2) ◽  
pp. 538 ◽  
Author(s):  
Gabriela BUSUIOC ◽  
Carmen Cristina ELEKES

Mushrooms have a species-specific affinity for heavy metals in soil. Therefore, mushrooms may act as an effective bioaccumulator of metals, thus can be used in mycoremediation technologies to remove and recover heavy metals from soil. The response of four Russula species to copper sulfate and lead acetate treatments concerning the absorption, accumulation and translocation of Fe, Cu, Zn, Mn and Pb was studied. Differences in metal concentrations were recorded between caps and stipes of the fruiting body and varied widely between the tested species. This confirms the species-dependent features of heavy metal absorption in mushrooms. Another factor that showed an influence on the bioavailability of metals in mushrooms was the metal content of soil. Similarities between the absorption and accumulation of copper and zinc were observed for R. vesca and R. atropurpurea. The treatments influenced the bioabsorption of heavy metals by the mushrooms and the metal mobility in the fruiting body. After lead acetate treatment, R. vesca, R. atropurpurea and R. integra had an increased bioaccumulation capacity compared to the control. Hyperaccumulating species, such as R. nigricans for lead soil pollution, would lead to the best results for mycoremediation as they are capable of accumulating higher concentration of heavy metals in comparison to other mushroom species.


2008 ◽  
Vol 54 (No. 6) ◽  
pp. 262-270 ◽  
Author(s):  
R. John ◽  
P. Ahmad ◽  
K. Gadgil ◽  
S. Sharma

Aquatic plants are known to accumulate heavy metals. In this study, Duckweed plants (<I>Lemna polyrrhiza</I> L.) were exposed to different concentrations of Cd and Pb. Various physio-biochemical parameters (fresh weight, chlorophyll content, soluble protein, soluble sugars, proline content and metal absorption) were studied. At lower metal concentrations, an increase in proline, protein and sugar was observed but at higher concentrations (above 30 mg/l) their decrease was noticed. Uptake of the metals was concentration and time dependent. Treatment with 1, 10 and 20 mg/l of Cd and Pb showed synergistic relation while 30 and 40 mg/l treatments showed antagonistic relation during the metal uptake. The results suggest that the <I>L. polyrrhiza</I> can be effectively used as a phytoremediator for wastewater polluted with more than one heavy metal at moderate concentrations.


2012 ◽  
Vol 178-181 ◽  
pp. 901-904 ◽  
Author(s):  
Han Zhou Hao ◽  
Ru Gang Zhong ◽  
Rong Xiao ◽  
Cheng Wu Liu ◽  
Xue Bin Zhong

Transpiration of plants has an important role in heavy metal absorption. When the transpiration is flourishing, plants accumulate more heavy metals, and its enrichment capability is also stronger.This article reviews the effect of the plant transpiration on hyperaccumulators of heavy metal uptake to lay a solid foundation for further research.


2005 ◽  
Vol 54 (9) ◽  
pp. 929-933 ◽  
Author(s):  
Toru YAMADA ◽  
Ryuji TAKEDA ◽  
Yusuke TSUDA ◽  
Sadayoshi MATSUMOTO ◽  
Sadao KOMEMUSHI ◽  
...  

2021 ◽  
Author(s):  
Shema Halder ◽  
Apurba Anirban

Buriganga, an economically important river of Dhaka, Bangladesh, is highly polluted by different toxic heavy metals. In this study, phytoremediation of EMS induced Indian mustard (Brassica juncea L) genotypes against three pollutants viz. lead (Pb), chromium (Cr) and cadmium (Cd) of Buriganga riverbank soil was assessed in field condition. Among 1-, 2- and 3% EMS induced genotypes, better seed germination rate, germination speed and plant survival rate were observed in 1% EMS induced genotype, BE21. The highest concentration of Pb, Cr and Cd were also obtained in the leaf of BE21 genotype and therefore was considered as a super-hyperaccumulator genotype. Concentration of Pb in the next generation of this genotype was approximately two-fold higher in the root (91.53 mg/kg dry weight, DW); three-fold higher in the shoot (33.31 mg/kg DW) and leaf (28.35 mg/kg DW), and more in the fruit (5.59 mg/kg DW) than the control. Concentration of Cr was approximately two-fold in the root (57.02 mg/kg DW), shoot (18.51 mg/kg DW) and leaf (14.98 mg/kg DW), and more in the fruit (6.15 mg/kg DW) of BE21 genotype compared to the control. Cd concentration was more in the root (1.96 mg/kg DW), leaf (0.52 mg/kg DW) and fruit (0.19 mg/kg DW) and less in the shoot (0.19 mg/kg DW) of BE21 genotype than the control. Root, shoot, leaf and fruit of BE21 altogether accumulated 98-, 73- and 87% Pb, Cr and Cd, respectively and can thus be utilized to remove heavy metals of Buriganga River. As like root, shoot and leaf, fruit also accumulated heavy metals; hence those plants which are used in phytoremediation should not be used as food or fodder. To the best of our knowledge, this is the first report of developing EMS induced hyperaccumulator genotype of B. juncea for phytoremediation of Buriganga riverbank soil of Bangladesh.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


2012 ◽  
Vol 19 (2) ◽  
pp. 381-394
Author(s):  
José Pereira ◽  
Octavian Postolache ◽  
Pedro Girão

Using A Segmented Voltage Sweep Mode and A Gaussian Curve Fitting Method to Improve Heavy Metal Measurement System PerformanceThis paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


Sign in / Sign up

Export Citation Format

Share Document