scholarly journals Phytoremediation of EMS Induced Brassica juncea Heavy Metal Hyperaccumulator Genotypes

2021 ◽  
Author(s):  
Shema Halder ◽  
Apurba Anirban

Buriganga, an economically important river of Dhaka, Bangladesh, is highly polluted by different toxic heavy metals. In this study, phytoremediation of EMS induced Indian mustard (Brassica juncea L) genotypes against three pollutants viz. lead (Pb), chromium (Cr) and cadmium (Cd) of Buriganga riverbank soil was assessed in field condition. Among 1-, 2- and 3% EMS induced genotypes, better seed germination rate, germination speed and plant survival rate were observed in 1% EMS induced genotype, BE21. The highest concentration of Pb, Cr and Cd were also obtained in the leaf of BE21 genotype and therefore was considered as a super-hyperaccumulator genotype. Concentration of Pb in the next generation of this genotype was approximately two-fold higher in the root (91.53 mg/kg dry weight, DW); three-fold higher in the shoot (33.31 mg/kg DW) and leaf (28.35 mg/kg DW), and more in the fruit (5.59 mg/kg DW) than the control. Concentration of Cr was approximately two-fold in the root (57.02 mg/kg DW), shoot (18.51 mg/kg DW) and leaf (14.98 mg/kg DW), and more in the fruit (6.15 mg/kg DW) of BE21 genotype compared to the control. Cd concentration was more in the root (1.96 mg/kg DW), leaf (0.52 mg/kg DW) and fruit (0.19 mg/kg DW) and less in the shoot (0.19 mg/kg DW) of BE21 genotype than the control. Root, shoot, leaf and fruit of BE21 altogether accumulated 98-, 73- and 87% Pb, Cr and Cd, respectively and can thus be utilized to remove heavy metals of Buriganga River. As like root, shoot and leaf, fruit also accumulated heavy metals; hence those plants which are used in phytoremediation should not be used as food or fodder. To the best of our knowledge, this is the first report of developing EMS induced hyperaccumulator genotype of B. juncea for phytoremediation of Buriganga riverbank soil of Bangladesh.

2014 ◽  
Vol 540 ◽  
pp. 239-242
Author(s):  
Guo Cheng Liu ◽  
Hao Zheng ◽  
Zhen Yu Wang

Two biochars were prepared at 400 °C from peanut shell and Chinese medicine material residue, and their surface properties were measured by scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDX). The two biochars were mixed at a ratio of 1:1, and then was applied to an acidic soil collected from a cropland in Huangdao district of Qingdao, Shandong province, China. The results of soil incubation and pot experiments showed that biochar applications to the acidic soil (1% and 5%) increased pH value from 5.8 to 6.1 and 6.7, improved Indian mustard (Brassica juncea) seed germination rate by 10% and 15%, respectively, and the shoot and root dry weight were significantly increased by 8.3%/28.5% and 11.5%/26.9%.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2011 ◽  
Vol 138-139 ◽  
pp. 1149-1155 ◽  
Author(s):  
Yi Dong Guan ◽  
Ye Hong Du ◽  
Zhen Dong Li ◽  
An Cheng Luo

This paper reports the concentration of heavy metals (Cr, Cu, Zn, Cd and Pb) in the soils and rices surrounding the abandoned rural waste dumping sites in Ningbo. Igeo (geoaccumulation index) was calculated to assess the contamination degree of heavy metals in soils. The mean contents of Cr, Cu, Cd, Zn and Pb of soils were 33.3, 24.1, 1.5, 118.9 and 45.6 mg/(kg DW) (dry weight), respectively. All of them were much higher than that of the reference value (i.e. CK), but there were no coherent trend of the metal contents within 1-120m distance from the dumping site. Igeo of heavy metals reveals the order of Cd>Cu>Cr>Pb>Zn, and the contamination assessment of soils using Igeo indicate the moderate Cd pollution, while the soils were unpolluted-moderately overall by Cr, Cu, Zn as well as Pb. The heavy metal contents in root, stem & leaf and rice grains were all remarkable higher than that of the CK at 20-120 m distances, and the heavy metal contents in root were evidently much higher than other plant parts, while those in rice grain were lowest, indicating the great bioaccumulation trend of heavy metals. Although the metal contents in the rice grain were within the legislation limit, its bioaccumulation trend of heavy metals was remarkable, whose contents were 4.38-fold for Cr, 1.76-fold for Cu, 1.28-fold for Zn, 2.67-fold for Cd and 3.03-fold for Pb higher than that of reference value, respectively. Finally, we proposed a decentralized in-situ restoration approach for the dumping sites.


2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


2021 ◽  
Author(s):  
Sunanda Kodikara ◽  
Hossein Tiemoory ◽  
Mangala Chathura De Silva ◽  
Pathmasiri Ranasinghe ◽  
Sudarshana Somasiri ◽  
...  

Abstract Heavy metal (HM) pollution has become a serious threat to coastal aquatic ecosystems. This study, therefore, aimed at assessing the spatial distribution of selected heavy metals/metalloids including Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), and Mercury (Hg) in surface sediment (0–15 cm) samples collected across Kalametiya Lagoon in southern Sri Lanka. Forty-one (41) grid points of the lagoon were sampled and the sediment samples were analyzed for HM content by using ICP-MS. A questionnaire survey was carried out to investigate the possible sources for HM pollution in Kalametiya Lagoon. Water pH and salinity showed significant variation across the lagoon. Overall mean value of pH and salinity were 6.68 ± 0.17 and 2.9 ± 2.2 PSU respectively. The spatial distribution of the heavy metals was not monotonic and showed a highly spatial variation. The kernel density maps of the measured heavy metals demarcated several different areas of the lagoon. The mean contents of As, Cd, Cr, Hg, and Pb were lower than that of threshold effect level (TEL) however, higher for Hg at the North Inlet. Nevertheless, it was still lower than potential effect level (PEL). Socio-economic interactions have dramatically reduced during the past two decades. Industrial sewage, river suspended sediments and agrochemicals such as fertilizers, pesticides were reportedly identified as the possible sources for heavy metal loads. Accumulation of toxic heavy metals can be minimized by detouring the water inflow to the lagoon.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2659
Author(s):  
Muhammad Zaim Anaqi Zaimee ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.


Author(s):  
Tiejun Wang ◽  
Xiaoyu Wang ◽  
Wei Tian ◽  
Lunguang Yao ◽  
Yadong Li ◽  
...  

Microbial immobilization is considered as a novel and environmentally friendly technology that uses microbes to reduce heavy metals accumulation in plants. To explore microbial resources which are useful in these applications, three water spinach rhizosphere soils polluted by different levels of heavy metals (heavy pollution (CQ), medium pollution (JZ), and relative clean (NF)) were collected. The community composition of heavy metal-immobilizing bacteria in rhizosphere soils and its effects on reducing the Cd2+ and Pb2+ concentrations in water spinach were evaluated. Four hundred strains were isolated from the CQ (belonging to 3 phyla and 14 genera), JZ (belonging to 4 phyla and 25 genera) and NF (belonged to 6 phyla and 34 genera) samples, respectively. In the CQ sample, 137 strains showed a strong ability to immobilize Cd2+ and Pb2+, giving Cd2+ and Pb2+ removal rates of greater than 80% in solution; Brevundimonas, Serratia, and Pseudoarthrobacter were the main genera. In total, 62 strains showed a strong ability to immobilize Cd2+ and Pb2+ in the JZ sample and Bacillus and Serratia were the main genera. A total of 22 strains showed a strong ability to immobilize Cd2+ and Pb2+ in the NF sample, and Bacillus was the main genus. Compared to the control, Enterobacter bugandensis CQ-7, Bacillus thuringensis CQ-33, and Klebsiella michiganensis CQ-169 significantly increased the dry weight (17.16–148%) of water spinach and reduced the contents of Cd2+ (59.78–72.41%) and Pb2+ (43.36–74.21%) in water spinach. Moreover, the soluble protein and Vc contents in the shoots of water spinach were also significantly increased (72.1–193%) in the presence of strains CQ-7, CQ-33 and CQ-169 compared to the control. In addition, the contents of Cd and Pb in the shoots of water spinach meet the standard for limit of Cd2+ and Pb2+ in vegetables in the presence of strains CQ-7, CQ-33 and CQ-169. Thus, the results provide strains as resources and a theoretical basis for the remediation of Cd- and Pb-contaminated farmlands for the safe production of vegetables.


Sign in / Sign up

Export Citation Format

Share Document