scholarly journals Biosorption of Pb(II) and Cd(II) Ions from Aqueous Solution by Chemically Modified Syzygium cumini Leaves and its Equilibrium, Kinetic and Thermodynamic Studies

Author(s):  
Syed Muhammad Salman ◽  
Sardar Muhammad ◽  
Mahmood Iqbal ◽  
Muhammad Aijaz ◽  
Muhammad Siddique ◽  
...  

  The removal of Pb (II) and Cd (II) ions from aqueous solution by a novel low-cost biosorbent; chemically modified Syzygium cumini leaves (CMSCL) was studied. The effects of biomass dosage, pH, concentration, temperature and contact time were investigated. Characterization of CMSCL was carried out by FT-IR spectroscopy, pore size, and surface area analyzer. The maximum biosorption capability of CMSCL for Pb (II) and Cd (II) ions was 104 and 50 mg/g at optimum conditions of pH 6 and 7, biomass dosage of 5 g/L, contact time of 120 and 90 min and temperature of 50 and 40 0C, respectively. The experimental data was analyzed using pseudo-first order and pseudo-second order kinetics models. The biosorption of Pb (II) and Cd (II) followed pseudo-second order model. Langmuir, Freundlich and Temkin adsorption isotherm models were applied to explain the removal of heavy metal ions by CMSCL biosorbent. Langmuir isotherm model fitted better than other isotherm models. Thermodynamics parameters such as �H0, �G0 and �S0 showed that the biosorption of Pb (II) and Cd (II) ions onto CMSCL was spontaneous, exothermic and feasible under examined conditions. The occurrence of various functional groups and change in the absorption frequency after metal uptake indicates that complexation was the main mechanism involved in the process of biosorption. Based on the present investigation, it was proved that CMSCL is an effective, alternative and economical biosorbent for the removal of Pb (II) and Cd (II) ions. Keywords: 

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


Author(s):  
Davoud Balarak ◽  
Yousef Mahdavi ◽  
Ali Joghatayi

Presence of Fluoride in water is safe and effective when used as directed, but it can be harmful at high doses. In the present paper SiO2 nanoparticles as a adsorbent is used for removal of fluoride from aqueous solution. The effect of various operating parameters such as initial concentration of F-, Contact time, adsorbent dosage and pH were investigated. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. Maximum adsorption capacity of the SiO2 nanoparticles was 49.95 mg/g at PH=6, contact time 20 min, initial concentration of 25 mg/L, and 25±2 ◦C temperatures, when 99.4% of Fwere removed. The adsorption equilibriums were analyzed by Langmuir and Freundlich isotherm models. It was found that the data fitted to Langmuir (R2=0.992) better than Freundlich (R2=0.943) model. Kinetic analyses were conducted using pseudo first-and second-order models. The regression results showed that the adsorption kinetics was more accurately represented by a pseudo second-order model. These results indicate that SiO2 nanoparticles can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution.


Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Hayrunnisa Nadaroglu ◽  
Ekrem Kalkan ◽  
Neslihan Celebi ◽  
Esen Tasgin

AbstractIn this study, a clinoptilolite modified with apolaccase was used to adsorb Reactive Black 5 (RB5) dye from aqueous solution using the batch procedure. The influences of pH, contact time, temperature and absorbent dosage on the adsorption were investigated. The optimum adsorption was obtained at pH = 6, contact time = 60 min, temperature = 25ºC and adsorbent dosages of 1.62 and 1.59 mg/50 mL per gram of clinoptilolite and of apolaccase-modified clinoptilolite (LMC), respectively). The adsorption experimental data fitted both the Langmuir and Freundlich isotherm models well. In addition, pseudo-first-order and pseudo-second-order kinetics were used to study the kinetics of RB5 dye adsorption onto natural clinoptilolite and LMC. Adsorption appears to follow pseudo-second-order kinetics with a high correlation coefficient. Thermodynamic parameters such as changes in the free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) of adsorption were calculated. The thermodynamic parameters indicate that the adsorption of RB5 dye onto LMC was less spontaneous, feasible and endothermic. The LMC can be used as an alternative low-cost adsorbent for the dye removal from aqueous solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Öznur Dülger ◽  
Fatma Turak ◽  
Kadir Turhan ◽  
Mahmure Özgür

Sumac Leaves (SL) (Rhus Coriaria L. ) were investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effects of initial dye concentration, initial solution pH, phases contact time, and adsorbent dose on the adsorption of MB on SL were investigated. The amount of dye adsorbed was found to vary with initial solution pH, Sumac Leaves dose, MB concentration, and phases contact time. The Langmuir and Freundlich adsorption models were evaluated using the experimental data and the experimental results showed that the Langmuir model fits better than the Freundlich model. The maximum adsorption capacity was found to be 151.69 mg/g from the Langmuir isotherm model at 25°C. The value of the monolayer saturation capacity of SL was comparable to the adsorption capacities of some other adsorbent materials for MB. The adsorption rate data were analyzed according to the pseudo-first order kinetic and pseudo-second order kinetic models and intraparticle diffusion model. It was found that kinetic followed a pseudo-second order model.


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 429-440 ◽  
Author(s):  
S. Gamoudi ◽  
N. Frini-Srasra ◽  
E. Srasra

AbstractThe use of organoclays as adsorbents in the remediation of polluted water has been the subject of many recent studies. In the present work, a Tunisian smectite modified with two cationic surfactants was used as an adsorbent to examine the adsorption kinetics, isotherms and thermodynamic parameters of fluoride ions from aqueous solution. Various pH values, initial concentrations and temperatures have been tested. Two simplified kinetic models, first-order and pseudo-second-order, were used to predict the adsorption rate constants. It was found that the adsorption kinetics of fluoride onto modified smectites at different operating conditions can best be described by the pseudo-second-order model. Adsorption isotherms and equilibrium adsorption capacities were determined by the fitting of the experimental data to well known isotherm models including those of Langmuir and Freundlich. The results showed that the Langmuir model appears to fit the adsorption better than the Freundlich adsorption model for the adsorption of fluoride ions onto modified smectites. The equilibrium constants were used to calculate thermodynamic parameters, such as the change of free energy, enthalpy and entropy. Results of this study demonstrated the effectiveness and feasibility of organoclays for the removal of fluoride ions from aqueous solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2021 ◽  
Author(s):  
Dinesh Chandola ◽  
Pooja Thathola ◽  
Ankit Bisht

Abstract Abstract This work investigates the removal of phenol from aqueous solution using Araucaria Columnaris bark (ACB) as biochar. Five different types of biochars were developed through pyrolysis at different temp from 300 to 500°C. The effects of initial concentration, contact time, pH and temperature on adsorption behavior were studied in batch mode for each biochar. The optimum contact time observed for equilibrium condition was 60 mins for every biochar. And, the maximum adsorption followed the order 298 K > 308 K > 318 K. Adsorption equilibrium data were fitted to Langmuir and Freundlich isotherms by non-linear regression method and kinetic data by linear regression method, and fitted to pseudo-first order, pseudo-second order and Intraparticle diffusion models. Adsorption kinetics was reasonably described by pseudo-second order model with R 2 value 0.99. Thermodynamic parameters were also estimated that implied, the adsorption process was spontaneous and exothermic in nature. Study further showed that the acidic pH increased adsorption capacity of biochar but decreases continuously towards basic side. The removal of phenol with prepared biochar was achieved as high as 100 % for ACB-500. The maximum iodine adsorption value of prepared biochar was found to be 453.3 mg/g.


Sign in / Sign up

Export Citation Format

Share Document