scholarly journals Removal of phenol from aqueous solution using biochar produced from Araucaria Columnaris Bark

Author(s):  
Dinesh Chandola ◽  
Pooja Thathola ◽  
Ankit Bisht

Abstract Abstract This work investigates the removal of phenol from aqueous solution using Araucaria Columnaris bark (ACB) as biochar. Five different types of biochars were developed through pyrolysis at different temp from 300 to 500°C. The effects of initial concentration, contact time, pH and temperature on adsorption behavior were studied in batch mode for each biochar. The optimum contact time observed for equilibrium condition was 60 mins for every biochar. And, the maximum adsorption followed the order 298 K > 308 K > 318 K. Adsorption equilibrium data were fitted to Langmuir and Freundlich isotherms by non-linear regression method and kinetic data by linear regression method, and fitted to pseudo-first order, pseudo-second order and Intraparticle diffusion models. Adsorption kinetics was reasonably described by pseudo-second order model with R 2 value 0.99. Thermodynamic parameters were also estimated that implied, the adsorption process was spontaneous and exothermic in nature. Study further showed that the acidic pH increased adsorption capacity of biochar but decreases continuously towards basic side. The removal of phenol with prepared biochar was achieved as high as 100 % for ACB-500. The maximum iodine adsorption value of prepared biochar was found to be 453.3 mg/g.

2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


Author(s):  
Farhad Salimi ◽  
Keivan Tahmasobi ◽  
Changiz Karami ◽  
Alireza Jahangiri

Modified nano-silica with Bismuth and Iron adsorbent was synthesized to be used as an effective adsorbent material for methylene blue (MB) removal from water solution. The prepared samples were characterized using SEM, FTIR, XRD and TEM. The effect of experimental parameters such as pH, contact time and initial concentration on adsorption treatment were studied. Results indicated that the optimum conditions for maximum <strong>adsorption</strong> of 20 mg/L MB <strong>were:</strong> contact time of 20 minutes, pH= 5-6 and 8 gr/L adsorbent, the remaining MB in solution was 1.75%. Langmuir and Freundlich isotherms were employed to model the experimental results and the Freundlich isotherm was the best-fitting models for the experiment results. The kinetic data were also analyzed through pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model well depicted the kinetics of dyes adsorption on adsorbent.


2014 ◽  
Vol 625 ◽  
pp. 245-248
Author(s):  
T.M. Ting ◽  
Mohamed Mahmoud Nasef ◽  
Kamaruddin Hashim

The kinetic behavior of a new adsorbent prepared by radiation induced grafting of vinyl benzyl chloride (VBC) onto nylon-6 fibers followed by functionalization with N-methyl-D-glucamine was investigated using pseudo second-order kinetic model. The linear method and non-linear regression methods were compared to determine the best fitting for the kinetic model describing the adsorption of boron by the new adsorbent. Four pseudo second-order kinetic linear equations were presented. A type-1 pseudo second-order linear method was found to fit best the experimental data. Non-linear regression method was found to be more appropriate to describe the boron adsorption by the fibrous adsorbent which has also shown fast kinetics.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


2020 ◽  
Vol 42 (1) ◽  
pp. 10-18
Author(s):  
Tae Hyun Gil ◽  
Wang Heon Lee ◽  
Johng-Hwa Ahn

Objective : Present research discussed the utilization of pumpkin-seed residue (PSR) after oil extraction with methanol as an adsorbent for methylene blue (MB) removal from aqueous solution.Method : The experiment was carried out to evaluate the influence of PSR adsorbent dose (7.5-25 g/L), initial MB concentration (25-200 mg/L), contact time (30-120 min), pH (3-11), and temperature (293-333 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models.Results and Discussion : A pseudo-equilibrium state was reached within 30 min of contact time at low initial MB concentration (25-50 mg/L) and 90 min at high concentration (100-200 mg/L). Increasing pH and temperature caused an increase in adsorption capacity. Thermodynamic studies demonstrated that the adsorption process was spontaneous with Gibb’s free-energy values ranging between -15.78 to -13.87 kJ/mol and endothermic with an enthalpy value of 0.011 kJ/mol. The adsorption equilibrium data fitted well with the Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was 20.33 mg/g. Tempkin isotherm model clarified that the heat of sorption process was 6.28 J/mol. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was 0.002-0.278 g/mg・min.Conclusions : Findings of the present study indicated that the PSR can be successfully used for removal of MB from aqueous solution. Therefore, the PSR was shown to have good potential as a biosorbent for MB removal.


2017 ◽  
Vol 75 (7) ◽  
pp. 1539-1547 ◽  
Author(s):  
Jing Zhang ◽  
Mao Liu ◽  
Tao Yang ◽  
Kai Yang ◽  
Hongyu Wang

A novel magnetic biochar from sewage sludge (MSBC) using SrFe12O19 as magnetic substrate was successfully synthesized under high-temperature and oxygen-free conditions. Several techniques and methodologies (X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer) were used to determine the surface functional groups and physicochemical properties of MSBC, which showed that the MSBC combined the features of both SrFe12O19 and sludge biochar (SBC). And then the adsorption behavior of methyl orange (MO) from aqueous solution onto the MSBC was investigated. And the influence of variables including pH, initial concentration of MO, adsorbent dosage and contact time was studied in detail. The optimal adsorption amount of MO (149.18 mg·g−1) was obtained with 600 MO mg·L−1, 2 MSBC g·L−1, at pH of 5 for 40 min. The equilibrium data were evaluated using Langmuir and Freundlich isotherms. The Langmuir model better described the absorption of MO. Besides, the kinetic data were analyzed using pseudo-first-order and pseudo-second-order equations, and the pseudo-second order exhibited the better fit for the kinetic studies (R2 = 0.9982). This study showed that MSBC could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup.


2016 ◽  
Vol 4 (12) ◽  
pp. 226-241
Author(s):  
K Veeravelan ◽  
S Arivoli ◽  
V Marimuthu

In the present study, adsorption of copper (II) ions from aqueous solution by Activated Zizyphus Jujuba shell Nano Carbon was investigated under batch mode. The influence of solution pH, sorbent dose, copper concentration, contact time and temperature was studied. The copper adsorption was favored with maximum adsorption at pH 6.5. Sorption equilibrium time was observed in 60 min. The equilibrium adsorption data were correlated with Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Hurkins-Jura, Halsay, Radlich-Peterson, Jovanovic and BET isotherm models. The kinetics of the adsorption process was tested by pseudo-first-order, pseudo-second order, Elovich and Intra-particle diffusion models. It was shown that adsorption of copper could be described by the pseudo-second order kinetic model. Thermodynamic parameters such as Gibbs free energy (ΔG0), the enthalpy (ΔH0) and the entropy change of sorption (ΔS0) have also been evaluated and it has been found that the adsorption process was spontaneous, feasible and endothermic in nature. The results indicated that Activated Zizyphus Jujuba shell Nano Carbon can be used as an effective and low-cost adsorbent to remove copper (II) from aqueous solution.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.


2015 ◽  
Vol 11 (9) ◽  
pp. 3876-3887
Author(s):  
Prakash Bhila Wagh ◽  
V.S Shrivastava ◽  
V.S Shrivastava

 The kinetics and equilibrium study of crystal violate dye adsorption on mixture of activated carbon (PWCAC) and (CSAC) was studied. The use of low cost ecofriendly adsorbent has been investigated as an ideal alternative to the current expensive methods of removing of dye from aqueous solution. This study was done by batch adsorption techniques. The quantitative adsorption kinetic and equilibrium parameter for crystal violate dye were studied using uv-visible adsorption spectroscopy. The effect of initial dye concentration, pH,adsorbent dose, temperature, particle size were determined to find the optimal condition for adsorption. The percentage removal of dye was found to be most effective at pH10and contact time 120 min and at an adsorbent dose 4 g/L of dye. The study indicates that’s, the percentage removal of dye increases with increasing initial dye concentration, adsorption dose and contact time and attains equilibrium at optimum conditions.The equilibrium study of adsorption of crystal violate dye on to mixture of activated carbon was investigated using pseudo first order and pseudo second order kinetic models. The adsorption kinetics was found to follow pseudo second order kinetic model. The equilibrium adsorption data of crystal violate dye on PWCAC and CSAC mixture was analyzed by Langmuir and Freundlich adsorption model. The results show that the Langmuir model provides the best correlation.


Author(s):  
Syed Muhammad Salman ◽  
Sardar Muhammad ◽  
Mahmood Iqbal ◽  
Muhammad Aijaz ◽  
Muhammad Siddique ◽  
...  

  The removal of Pb (II) and Cd (II) ions from aqueous solution by a novel low-cost biosorbent; chemically modified Syzygium cumini leaves (CMSCL) was studied. The effects of biomass dosage, pH, concentration, temperature and contact time were investigated. Characterization of CMSCL was carried out by FT-IR spectroscopy, pore size, and surface area analyzer. The maximum biosorption capability of CMSCL for Pb (II) and Cd (II) ions was 104 and 50 mg/g at optimum conditions of pH 6 and 7, biomass dosage of 5 g/L, contact time of 120 and 90 min and temperature of 50 and 40 0C, respectively. The experimental data was analyzed using pseudo-first order and pseudo-second order kinetics models. The biosorption of Pb (II) and Cd (II) followed pseudo-second order model. Langmuir, Freundlich and Temkin adsorption isotherm models were applied to explain the removal of heavy metal ions by CMSCL biosorbent. Langmuir isotherm model fitted better than other isotherm models. Thermodynamics parameters such as �H0, �G0 and �S0 showed that the biosorption of Pb (II) and Cd (II) ions onto CMSCL was spontaneous, exothermic and feasible under examined conditions. The occurrence of various functional groups and change in the absorption frequency after metal uptake indicates that complexation was the main mechanism involved in the process of biosorption. Based on the present investigation, it was proved that CMSCL is an effective, alternative and economical biosorbent for the removal of Pb (II) and Cd (II) ions. Keywords: 


Sign in / Sign up

Export Citation Format

Share Document