Cross-Flow Microfiltration of a High Strength Industrial Wastewater: Modelling of Membrane Fouling Mechanisms

Author(s):  
Mutiu Kolade Amosa ◽  
Mohammed Saedi Jami ◽  
Ma'an Fahmi R. AlKhatib
2018 ◽  
Vol 21 (1) ◽  
pp. 58-63

<p>The Membrane Bio-Reactor (MBR) technology offers a series of environmentally-friendly advantages, such as high quality effluent, pathogens removal capacity and avoided use of chemicals for disinfection, allowing it to be regarded as an environmentally friendly technology, when applied for wastewater treatment. However, membrane fouling still remains a major drawback, preventing its widespread application for municipal or industrial wastewater treatment. The use of additives (i.e. adsorbents, bio-carriers etc.) is considered to be among the major strategies implemented for membrane fouling control over the last few years. The present work examines the influence of bio-carriers addition, as well as of zeolite powder on the reversible and irreversible membrane fouling of a lab-scale MBR. High-strength synthetic municipal wastewater (with BOD5 around 1000 mg/L) was fed as the substrate for the activated sludge process and a flat-sheet microfiltration membrane was operated for solids (biomass) - liquid separation at the flux of 17 L/m2h. The obtained results showed that the addition of zeolite contributed mainly to the alleviation of irreversible fouling, leaving the reversible fouling practically unaffected, while the addition of bio-carriers had quite the opposite effect. In addition, it was shown that the lab-scale MBR system operated successfully, treating a high-strength synthetic municipal wastewater, as high removals were observed in terms of both organics and especially of ammonium removal (over 98%).</p>


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


2006 ◽  
Vol 53 (11) ◽  
pp. 269-276 ◽  
Author(s):  
C.T. Hay ◽  
D.D. Sun ◽  
S.L. Khor ◽  
J.O. Leckie

A high strength industrial wastewater was treated using a pilot scale submerged membrane bioreactor (MBR) at a sludge retention time (SRT) of 200 d. The MBR was operated at a high sludge concentration of 20 g/L and a low F/M ratio of 0.11 during 300 d of operation. It was found that the MBR could achieve COD and TOC overall removal efficiencies at more than 99 and 98% TN removal. The turbidity of the permeate was consistently in the range of 0.123 to 0.136 NTU and colour254 absorbance readings varied from 0.0912 to 0.0962 a.u. cm−1. The sludge concentration was inversely proportional to the hydraulic retention time (HRT), yielded excellent organic removal and extremely low sludge production (0.0016 kgVSS/day).


2000 ◽  
Vol 41 (10-11) ◽  
pp. 173-180 ◽  
Author(s):  
L. Vera ◽  
S. Delgado ◽  
S. Elmaleh

A novel technique was tested for reducing tubular mineral membrane fouling by injecting gas into a cross-flow stream. The injected gas is thought to form complex hydrodynamic conditions inside the microfiltration module, which increase the wall shear stress, preventing the membrane fouling and enhancing the microfiltration mass transfer. The experimental study was carried out with biologically treated wastewater filtered through a tubular inorganic membrane (Carbosep M14). The flux, monotonously increasing with gas velocity, was more than tripled. New dimensionless quantities of shear stress number and resistance number were developed by generalisation of the dimensional analysis already carried out for the steady state flux of classical unsparged cross-flow filtration. A unique formalism allowed then interpreting the experimental results of both classical diphasic filtration and sparged filtration. The main limiting mass transport process was due to the solid content.


2021 ◽  
Vol 15 ◽  
pp. 117863022110601
Author(s):  
Mekonnen Birhanie Aregu ◽  
Negasa Eshete Soboksa ◽  
Girum Gebremeskel Kanno

It is generally accepted that industrial wastewater like tannery effluent is high strength wastewater. The aim of this study was to examine the capacity of Vetiver grass for the treatment of high strength wastewater in a constructed wetland. Two constructed wetland beds were designed and one of them was not planted used as a control group. The grass was planted with 20 cm by 20 cm distance from each seedling. The biometric characteristics of Vetiver grass was evaluated by taking randomly selected clusters of the grass. The concentration of chromium in the extract of parts of the grass was determined by atomic absorption spectrophotometer. The Chromium bioaccumulation and Translocation factor was estimated. Composite samples before and after treatment of 4 different hydraulic retention time was collected. The physiochemical analysis of the wastewater has been carried out. The constructed wetland bed with Vetiver grass performed that, BOD, COD, NH4-N, NO3-N, TN, PO4-P, and TP were reduced at the retention time of 9 days by 91.9%, 96.3%, 62%, 86%, 88.7%, 96.3%, and 92.2% respectively. Chromium was also reduced by 97% at retention time of both 7 and 9 days over the planted bed. The bed with plant performs significantly better than without plant at P-value <.01. Therefore, Vetiver grass has a capacity to reclaim high strength industrial wastewater in tropical areas.


2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1553 ◽  
Author(s):  
Jae Hong Park ◽  
Dong Seok Shin ◽  
Jae Kwan Lee

Animal wastewater is one of the wastewaters that has a color and is difficult to treat because it contains a large amount of non-degradable organic materials. The photo-assisted Fenton oxidation technique was applied to treat animal wastewater, and the optimal conditions of chemical oxygen demands (COD) removal were analyzed according to changes in pH, ferrous ion, H2O2, and ultraviolet (UV) light intensity as a single experimental condition. Experimental results showed that, under the single-factor experimental conditions, the optimal conditions for degradation of animal wastewater were pH 3.5, Fe(II) 0.01 M, H2O2 0.1 M, light intensity 3.524 mW/m2. Under the optimal conditions, COD removal efficiency was 91%, sludge production was 2.5 mL from 100 mL of solution, color removal efficiency was 80%, and coliform removal efficiency was 99.5%.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1546
Author(s):  
Monika Vítězová ◽  
Anna Kohoutová ◽  
Tomáš Vítěz ◽  
Nikola Hanišáková ◽  
Ivan Kushkevych

Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus sp., Methanobacterium sp. and Methanospirillum sp. prevailed in this group. This work summarizes the relation of industrial wastewater composition and methanogen microbial communities present in different reactors treating these wastewaters.


Sign in / Sign up

Export Citation Format

Share Document