scholarly journals Effect of Obesity and Diabetes on Alzheimer's APP Gene Expression in Mouse Adipose Tissues

2010 ◽  
Vol 20 (7) ◽  
pp. 1012-1018
2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Maria Grazia Muoio ◽  
Marianna Talia ◽  
Rosamaria Lappano ◽  
Andrew H. Sims ◽  
Veronica Vella ◽  
...  

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.


2005 ◽  
Vol 37 (8) ◽  
pp. 474-481 ◽  
Author(s):  
I. Eisele ◽  
I. S. Wood ◽  
A. J. German ◽  
L. Hunter ◽  
P. Trayhurn

2001 ◽  
Vol 86 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Jean-François Hocquette ◽  
Benoît Graulet ◽  
Michel Vermorel ◽  
Dominique Bauchart

The nutritional and physiological modifications that occur during the weaning period induce adaptations of tissue metabolism in all mammal species. Among the adaptations due to weaning in ruminants, the regulation of lipoprotein lipase (LPL) activity, one of the rate-limiting steps of fatty acid utilization by tissues, was still unknown. The present study aimed at comparing LPL activity and gene expression in the heart, seven skeletal muscles and three adipose tissue sites between two groups of seven preruminant (PR) or ruminant (R) calves having a similar age (170 d), similar empty body weight (194 kg) at slaughter, and similar net energy intake from birth onwards. Triacylglycerol content of adipose tissues was 16 % lower in R than in PR calves, (P<0·01). This could be partly the result from a lower LPL activity (-57 %, P<0·01). LPL mRNA levels were also lower in R calves (-48 % to -68 %, P<0·01) suggesting a pretranslational regulation of LPL activity. Activity and mRNA levels of LPL did not differ significantly in the heart and skeletal muscles except in the masseter in which LPL activity and mRNA levels were higher (+50 % and +120 % respectively, P<0·01) in the R calves. Regulation of LPL in masseter could be explained by the high contractile activity of this muscle after weaning due to solid food chewing. In conclusion, weaning in the calf affects LPL activity and expression in adipose tissues, but not in skeletal muscles except the masseter.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Maryam Aghayan ◽  
Mehdi Hedayati ◽  
Maryam Zarkesh ◽  
...  

Abstract Background Apelin, as an adipokine, plays an important role in the pathogenesis of insulin resistance and type 2 diabetes. This study aimed to determine whether the quality and quantity of dietary carbohydrates were associated with apelin gene expression in subcutaneous and visceral adipose tissues. Methods In this cross-sectional study, 102 adults who underwent minor abdominal surgery were selected. Approximately 100 mg of subcutaneous and visceral adipose tissues were collected during the surgery to measure apelin gene expression. Anthropometric measurment, blood samples, and dietary intakes were collected before surgery. The dietary carbohydrate intake, glycemic index (GI), and glycemic load (GL) were determined. Results The average apelin concentration was 269.6 ± 98.5(pg/mL), and 16.3% of participants were insulin resistant. There was a correlation between insulin (p-value = 0.043), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)(p-value = 0.045) and apelin gene expression in visceral adipose tissue. There was a positive association of apelin gene expression with dietary GI and GL after adjustment for age, sex, and waist circumference in visceral and subcutaneous adipose tissues(p < 0.05). Apelin gene expression in visceral(p = 0.002) and subcutaneous(p = 0.003) adipose tissues was directly associated with foods with a higher GI. There was no association between total carbohydrate intake and apelin gene expression in both visceral and subcutaneous adipose tissues. Conclusions Dietary GI and GL, not total carbohydrate intake, were positively associated with apelin gene expression in both visceral and subcutaneous adipose tissues. Future studies are warranted to illustrate the chronic and acute effect of carbohydrate quality on apelin homeostasis.


Sign in / Sign up

Export Citation Format

Share Document