Regulation of mammary tumor cell cycle kinetics and gene expression by dietary fatty acids

1998 ◽  
Author(s):  
Yuk-fun Ng
1992 ◽  
Vol 118 (5) ◽  
pp. 1213-1221 ◽  
Author(s):  
S W Lee ◽  
C Tomasetto ◽  
D Paul ◽  
K Keyomarsi ◽  
R Sager

Subtractive hybridization, selecting for mRNAs expressed in normal human mammary epithelial cells (NMECs) but not in mammary tumor cell lines (TMECs), led to the cloning of the human gap junction gene connexin 26 (Cx26), identified by its sequence similarity to the rat gene. Two Cx26 transcripts derived from a single gene are expressed in NMECs but neither is expressed in a series of TMECs. Northern analysis using rat Cx probes showed that Cx43 mRNA is also expressed in the normal cells, but not in the tumor lines examined. Connexin genes Cx31.1, Cx32, Cx33, Cx37, and Cx40 are not expressed in either normal cells or the tumor lines examined. In cell-cell communication studies, the normal cells transferred Lucifer yellow, while tumor cells failed to show dye transfer. Both Cx26 and Cx43 proteins were immunolocalized to membrane sites in normal cells but were not found in tumor cells. Further analysis demonstrated that Cx26 is a cell-cycle regulated gene expressed at a moderate level during G1 and S, and strongly up-regulated in late S and G2, as shown with lovastatin-synchronized NMECs. Cx43, on the contrary is constitutively expressed at a uniform low level throughout the cell cycle. Treatment of normal and tumor cells with a series of drugs: 5dB-cAMP, retinoic acid, okadaic acid, estradiol, or TGFb had no connexin-inducing effect in tumor cells. However, PMA induced re-expression of the two Cx26 transcripts but not of Cx43 in several TMECs. Thus Cx26 and Cx43 are both downregulated in tumor cells but respond differentially to some signals. Modulation of gap-junctional activity by drug therapy may have useful clinical applications in cancer.


1991 ◽  
Vol 3 (7) ◽  
pp. 213-223 ◽  
Author(s):  
Maria Tomasz ◽  
Christine S. Hughes ◽  
Dondapati Chowdary ◽  
Susan Riley Keyes ◽  
Roselyn Lipman ◽  
...  

2017 ◽  
Vol 61 (9) ◽  
pp. 1600934 ◽  
Author(s):  
Jia-Yu Ke ◽  
Taylor Banh ◽  
Yung-Hsuan Hsiao ◽  
Rachel M. Cole ◽  
Shana R. Straka ◽  
...  

2014 ◽  
Vol 34 (8) ◽  
pp. 694-706 ◽  
Author(s):  
Kimberly M. Jeckel ◽  
Gerrit J. Bouma ◽  
Ann M. Hess ◽  
Erin B. Petrilli ◽  
Melinda A. Frye

2019 ◽  
Vol 20 (5) ◽  
pp. 1237 ◽  
Author(s):  
Bhawna Sharma ◽  
Kalyan Nannuru ◽  
Sugandha Saxena ◽  
Michelle Varney ◽  
Rakesh Singh

Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2−/−) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2−/− mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document