mammary tumor cell line
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1427
Author(s):  
Marina Gobbe Moschetta-Pinheiro ◽  
Jucimara Colombo ◽  
Bianca Lara Venâncio de Godoy ◽  
Julia Ferreira Balan ◽  
Bianca Carlos Nascimento ◽  
...  

Breast cancer is the most prevalent tumor type among women and female dogs. Tumor malignancy is characterized by the epithelial-to-mesenchymal transition (EMT) which leads to the metastasis formation. The inhibition of angiotensin II type I receptor (AGTR1) by an antagonist such as losartan can suppress angiogenesis, consequently contributing to the metastasis control. The aim of this study was to analyze the capacity of losartan and AGTR-1 gene edition to modulate the EMT process in triple negative/metastatic mammary tumor cells, compared to existing treatment protocols such as carboplatin. The cell lines CF41.Mg and MDA-MB-468, were cultured and treated with carboplatin, losartan, or submitted to AGTR-1 gene edition by CRISPR/Cas9. EMT markers and PARP-1 protein and gene expression were evaluated by immunofluorescence or immunocytochemistry and qRT-PCR, respectively. Cell migration capacity was also evaluated. For CF41.Mg and MDA-MB-468 cell lines, there was an increase in E-cadherin and a decrease in N-cadherin and PARP-1 protein and gene expression after treatment with carboplatin, losartan, both in combination and after AGTR-1 gene edition. There was a decrease in VEGF and PARP-1 protein and gene expression after AGTR-1 gene edition. Moreover, in both lines, reduction in invasion rate was observed after all treatments. Our data suggest that losartan and the gene edition of AGTR-1 by CRISPR/Cas9 were able to block the DNA repair and control the EMT process, such as carboplatin. The results in the canine species are unprecedented, as there are no data in the literature that demonstrate the action of losartan in this tumor type.


Author(s):  
Richa Arora ◽  
Waseem Akram Malla ◽  
Arpit Tyagi ◽  
Shikha Saxena ◽  
Sonalika Mahajan ◽  
...  

Background: Identification of candidate reference genes for real time PCR study is a preliminary requirement to normalize experimental data and thus, deduce a reliable conclusion. Complex tissues like mouse mammary gland constitutes various cell types which makes it difficult to identify reference gene constantly expressing under different experimental conditions. Methods: In this study we have identified suitable reference genes for 4T1 tumor cell line derived from mouse mammary tumor cells. We have studied four genes namely Gapdh, Actb, Prdx1 and Ctbp1 for their expression stability in CPV2.NS1 post transfected 4T1 cells by Best Keeper. Result: By our study, three reference genes i.e. Prdx1, Gapdh and Ctbp1 were found to be quite correlated with the BestKeeper index, but by considering all three criteria of selection by BestKeeper algorithm, Prdx1 showed minimum standard deviation and coefficient of variation and was found to be ranked at first position by BestKeeper which suggests Prdx1 to be considered as better internal control gene among all other reference genes taken in our study for qPCR based experiments in 4T1 mouse mammary tumor cell line transfected with CPV2.NS1


Author(s):  
Polyana Barbosa Silva ◽  
Márcia Antoniazi Michelin ◽  
Millena Prata Jammal ◽  
Eddie Fernando Cândido Murta

Abstract Objective To evaluate the antitumoral role of γδ TDC cells and αβ TDC cells in an experimental model of breast cancer. Methods Thirty female Balb/c mice were divided into 2 groups: control group (n = 15) and induced-4T1 group (n = 15), in which the mice received 2 × 105 4T1 mammary tumor cell line. Following the 28-day experimental period, immune cells were collected from the spleen and analyzed by flow cytometry for comparison of αβ TDC (TCRαβ+ CD11c+MHCII+) and γδ TDC (TCRγδ+CD11c+MHCII+) cells regarding surface markers (CD4+ and C8+) and cytokines (IFN-γ, TNF-α, IL-12 and IL-17). Results A total of 26.53% of γδ TDC - control group (p < 0.0001) - the proportion of αβ TDC was lower in splenic cells than γδ TDC; however, these 2 cell types were reduced in tumor conditions (p < 0.0001), and the proportion of IFN-γ, TNF-α, IL-12 and IL-17 cytokines produced by γδ TDC was higher than those produced by αβ TDC, but it decreased under conditions of tumor-related immune system response (p < 0.0001). Conclusion Healthy mice engrafted with malignant cells 4T1 breast tumor presented TDC with γδ TCR repertoire. These cells express cytotoxic molecules of lymphocytes T, producing anti-tumor proinflammatory cytokines.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Ying Zhao ◽  
Zixiang Lin ◽  
Zhaoyan Lin ◽  
Chaoyu Zhou ◽  
Gang Liu ◽  
...  

Mucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2. In addition, overexpression of MUC1 in CIPp-MUC1 cells inhibited the suppressing activity of disulfiram on the growth and metastasis of tumor cells, as well as inhibiting the pro-apoptotic effect of disulfiram. In vivo studies, on the other side, showed more rapid tumor growth and stronger resistance to disulfiram treatment in CIPp-MUC1 xenograft mice than in wild-type control. In conclusion, our study demonstrated the importance of MUC1 in affecting the therapeutical efficiency of disulfiram against canine mammary tumors, indicating that the expression level of MUC1 should be considered for clinical use of disulfiram or other drugs targeting PI3K/Akt pathway.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Tiffany Scully ◽  
Annie James ◽  
Chifei Kang ◽  
Irini M Antoniou ◽  
Abora Ettela ◽  
...  

Abstract Obesity is associated with increased cancer risk and cancer-associated mortality1,2. Hypertriglyceridemia (HTG), a component of the metabolic syndrome which frequently co-exists with obesity, has been associated with increased breast cancer risk and mortality in triple negative breast cancer (TNBC)3,4. To determine if HTG is causally related to enhanced TNBC progression in the absence of other obesity-associated characteristics, TNBC growth and metastasis in a mouse model of HTG was examined. Mice overexpressing human apolipoprotein C3 (AC3) were backcrossed onto FVB/N background and crossed with recombination-activating gene 1 (Rag1) knockout mice to generate immunodeficient HTG mice. AC3 mice relative to wild-type (WT) littermates showed a 20-fold higher circulating triglycerides (p &lt; 0.0001) and elevated very low density lipoprotein (VLDL) cholesterol (p = 0.001). No differences in body weight, body composition, blood glucose or plasma insulin levels were observed between the two groups, allowing for investigation on the influence of HTG on TNBC without confounders such as hyperinsulinemia or hyperglycemia. AC3 mice orthotopically implanted with the mouse mammary tumor cell line, Mvt1, showed both increased tumor growth (AC3 vs WT: 1157.0 ± 84.2 vs 707.2 ± 58.6 mm3, p = 0.0009) and lung metastasis (AC3 vs WT: 57.3 ± 3.0 vs 32.9 ± 5.3 mm3, p = 0.001) relative to WT mice. Immunodeficient Rag1/AC3 mice likewise, showed increased tumor growth compared to WT controls when implanted with human TNBC MDA-MB-231 cells (AC3 vs WT: 363.2 ± 113.9 vs 92.95 ± 16.2 mm3, p = 0.038). To investigate how HTG affects tumor lipid metabolism, serum and tumors from both groups were analyzed by liquid chromatography/mass spectrometry. Total alkyl-acyl, di-acyl-phosphatidylcholines and sphingomyelin concentrations were higher in the serum of AC3 mice relative to WT. In contrast, no overall difference in tumor phospholipid or acylcarnitine content was noted between AC3 and WT mice, suggesting no difference in fatty acid oxidation in the setting of HTG. Mvt1 tumors from AC3 and WT mice were analyzed by RNA sequencing. Decreased expression of genes associated with cholesterol synthesis (Fdft1, Pvmk, Acss2) were found in tumors from AC3 mice. Tumors from AC3 mice also showed decreased protein expression of LDLR, which is associated with LDL cholesterol uptake. Overall, these findings suggest that HTG, independently of other obesity-associated characteristics such as hyperinsulinemia and hyperglycemia, leads to changes in intracellular lipid metabolism and promotes TNBC progression. References: 1Chan, D. S. M. et al. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol.25, 1901-1914 (2014). 2Pierobon, M. & Frankenfeld, C. L. Breast Cancer Res. Treat.137, 307-314 (2013). 3Lofterød, T. et al. BMC Cancer18, 654 (2018).4Goodwin, P. J. et al. Nutr. Cancer27, 284-292 (1997).


2020 ◽  
Vol 21 (4) ◽  
pp. 1185
Author(s):  
Lilla Hámori ◽  
Gyöngyi Kudlik ◽  
Kornélia Szebényi ◽  
Nóra Kucsma ◽  
Bálint Szeder ◽  
...  

Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1−/−, p53−/− mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Endris Muhammed ◽  
Li Chen ◽  
Ying Gao ◽  
Daniel Erenso

AbstractWe present a study that uses a laser trapping technique for measurement of radiation sensitivity of untreated and chemo-treated cancer cells. We used a human mammary tumor cell line (4T1) treated by an antitumor compound, 2-Dodecyl-6-methoxycyclohexa-2, 5-diene-1,4-dione (DMDD), which was extracted from the root of Averrhoa carambola L. The untreated control group, and both 2-hour and 24-hour treated groups of 4T1 cells were used in this study. The absorbed threshold ionization energy (TIE) and the threshold radiation dose (TRD) were determined using a high-power infrared laser (at 1064 nm) trap by single and multiple cells trapping and ionization. The results were analyzed using descriptive and t-statistics. The relation of the TIE and TRD to the mass of the individual cells were also analyzed for different hours of treatment in comparison with the control group. Both TIE and TRD decrease with increasing treatment periods. However, the TRD decreases with mass regardless of the treatment. Analyses of the TRD for single vs multiple cells ionizations within each group have also consistently showed this same behavior regardless of the treatment. The underlying factors for these observed relations are explained in terms of radiation, hyperthermia, and chemo effects.


2019 ◽  
Vol 34 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Adriany Amorim ◽  
Ana Carolina Mafud ◽  
Silvania Nogueira ◽  
Joilson Ramos- Jesus ◽  
Alyne Rodrigues de Araújo ◽  
...  

2018 ◽  
Vol 369 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Katrina L. Watson ◽  
Robert A. Jones ◽  
Anthony Bruce ◽  
Roger A. Moorehead

2017 ◽  
Vol 20 (1) ◽  
pp. 103-110 ◽  
Author(s):  
B. Zhou ◽  
D. Zhang ◽  
S. M. Pei ◽  
H. Zhang ◽  
H. C. Du ◽  
...  

Abstract Canine mammary tumors are the most common neoplasms in intact female dogs. The surgery cannot always solve the problem, chemotherapy are recommend to these patients. However, chemotherapy could always fail because of multidrug resistance (MDR). Through stepwise increasing 5-Fluorouracil (5-FU) concentration in the culture medium, a 5-FU-resistant canine mammary tumor cell line CMT7364/5-FU was established to disclose the molecular mechanism of the drug resistance. Cell morphology, cell sensitivity to drugs, growth curves, expression of proteins, and chemo-sensitivity in vivo were compared between the parental cell line and resistant cell line. As compared it to its parental cell line (CMT7364), CMT7364/5-FU showed different morphology, cross-resistant to other chemo-drugs and a prolonged population doubling time (PDT). The drug efflux pump proteins (ABCB1 and ABCG2) in CMT7364/5-FU were up-regulated. In vivo, the similar result revealed that CMT7364/5-FU cell line was more resistant to 5-FU. In conclusion, a 5-FU-resistant canine mammary tumor cell line (CMT7364/5-FU) was successfully established, it can serve as a good model for researching the mechanism of MDR and screening effective agents to reverse drug resistance.


Sign in / Sign up

Export Citation Format

Share Document