scholarly journals A Comparison of Predatory Behavior of Newly Hatched Rhabdophis tigrinus (Serpentes: Colubridae) on Frogs and Fish

1997 ◽  
Vol 17 (2) ◽  
pp. 39-45 ◽  
Author(s):  
AKIRA MORI
Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 160
Author(s):  
Akihiko Yamamoto ◽  
Takashi Ito ◽  
Toru Hifumi

Disseminated intravascular coagulation, a severe clinical condition caused by an underlying disease, involves a markedly continuous and widespread activation of coagulation in the circulating blood and the formation of numerous microvascular thrombi. A snakebite, including that of the Yamakagashi (Rhabdophis tigrinus), demonstrates this clinical condition. Thus, an animal model using Yamakagashi venom was constructed. Yamakagashi venom was administered to rats, and its lethality and the changes in blood coagulation factors were detected after venom injection. When 300 μg venom was intramuscularly administered to 12-week-old rats, (1) they exhibited hematuria with plasma hemolysis and died within 48 h; (2) Thrombocytopenia in the blood was observed in the rats; (3) irreversible prolongation of prothrombin time in the plasma to the measurement limit occurred; (4) fibrinogen concentration in the plasma irreversibly decreased below the measurement limit; and (5) A transient increase in the plasma concentration of D-dimer was observed. In this model, a fixed amount of Rhabdophis tigrinus venom injection resulted in the clinical symptom similar to the human pathology with snakebite. The use of the rat model is very effective in validating the therapeutic effect of human disseminated intravascular coagulation condition due to snakebite.


Chemoecology ◽  
2008 ◽  
Vol 18 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Deborah A. Hutchinson ◽  
Alan H. Savitzky ◽  
Akira Mori ◽  
Jerrold Meinwald ◽  
Frank C. Schroeder

2012 ◽  
Vol 91 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Valeria Senigaglia ◽  
Renaud de Stephanis ◽  
Phillippe Verborgh ◽  
David Lusseau

Paleobiology ◽  
10.1666/13024 ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 34-49 ◽  
Author(s):  
Devapriya Chattopadhyay ◽  
Martin Zuschin ◽  
Adam Tomašových

Edge-drilling is an unusual predation pattern in which a predatory gastropod drills a hole on the commissure between the valves of a bivalve. Although it is faster than wall drilling, it involves the potential risk of amputating the drilling organ. We therefore hypothesize that this risky strategy is advantageous only in environments where predators face high competition or predation pressure while feeding. The high frequency of edge-drilling (EDF, relative to the total number of drilled valves) in a diverse Recent bivalve assemblage from the Red Sea enables us to test this hypothesis, predicting (1) a low EDF in infaunal groups, (2) a high EDF in bivalves with elongated shape, (3) high incidence of edge-drilling in groups showing a high wall-drilling frequency, and (4) high EDF in shallow habitats. We evaluate these predictions based on >15,000 bivalve specimens. Among ecological attributes, we found substrate affinity and predation intensity of a species to be good predictors of edge-drilling incidence. Infaunal taxa with high length/width ratio have a low EDF, in accordance with our predictions. Predation intensity is also a significant predictor of edge-drilling; groups with high predation intensity show higher incidence of edge-drilling, confirming our prediction. Although water depth fails to show any significant effect on EDF, this analysis generally supports the high-risk hypothesis of edge-drilling incidence because shallow depths have considerable microhabitat variability. Classically the drill hole site selection has often been linked to predatory behavior. Our study indicates that prey attributes are also crucial in dictating the behavioral traits of a driller such as site selection. This calls for considering such details of the prey to fully understand predation in modern and fossil habitats. Moreover, this perspective is important for tackling the longstanding riddle of the limited temporal and spatial distribution of edge-drilling.


1998 ◽  
Vol 201 (6) ◽  
pp. 837-850 ◽  
Author(s):  
K V Kardong ◽  
V L Bels

The predatory behavior of rattlesnakes includes many distinctive preparatory phases leading to an extremely rapid strike, during which venom is injected. The rodent prey is then rapidly released, removing the snake's head from retaliation by the prey. The quick action of the venom makes possible the recovery of the dispatched prey during the ensuing poststrike period. The strike is usually completed in less than 0.5 s, placing a premium on an accurate strike that produces no significant errors in fang placement that could result in poor envenomation and subsequent loss of the prey. To clarify the basis for effective strike performance, we examined the basic kinematics of the rapid strike using high-speed film analysis. We scored numerous strike variables. Four major results were obtained. (1) Neurosensory control of the strike is based primarily upon sensory inputs via the eyes and facial pits to launch the strike, and upon tactile stimuli after contact. Correction for errors in targeting occurs not by a change in strike trajectory, but by fang repositioning after the jaws have made contact with the prey. (2) The rattlesnake strike is based upon great versatility and variation in recruitment of body segments and body postures. (3) Forces generated during acceleration of the head are transferred to posterior body sections to decelerate the head before contact with the prey, thereby reducing impact forces upon the snake's jaws. (4) Body acceleration is based on two patterns of body displacement, one in which acute sections of the body open like a gate, the other in which body segments flow around postural curves similar to movements seen during locomotion. There is one major implication of these results: recruitment of body segments, launch postures and kinematic features of the strike may be quite varied from strike to strike, but the overall predatory success of each strike by a rattlesnake is very consistent. <P>


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1610
Author(s):  
Mohammad Vatanparast ◽  
Youngjin Park

Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony’s brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < −1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.


2021 ◽  
Vol 14 (4) ◽  
pp. 825-828
Author(s):  
Cédric Roquelo ◽  
Angeli Kodjo ◽  
Jean-Lou Marié ◽  
Bernard Davoust

Background and Aim: Leptospirosis is a zoonotic disease. Information on the recent prevalence of Leptospira in hunted wild animals is limited, particularly in southeastern France. A cross-sectional survey was conducted to assess the prevalence and diversity of Leptospira spp. among wild boars (Sus scrofa) and red foxes (Vulpes vulpes) from two military camps in Southeastern France. Materials and Methods: Serological analyses were performed using microscopic agglutination tests and polymerase chain reaction (PCR) assays were used to demonstrate Leptospira spp. infection from boar kidney DNA extracts. Results: According to the species, the positive sera were obtained from 18% of 358 boars and 6 % of 64 foxes tested. The prevalence rate is significantly higher (p=0.02) in boars than in foxes. In wild boar, Australis represents the most recorded serogroup (15.9%), followed by Sejroe (2.8%) and icterohaemorhagiae (2.8%). In red fox, icterohaemorhagiae represents the most recorded serogroup (6.25%), followed by Sejroe (1.57%) and Hebdomadis (1.57%). PCR-based detection of Leptospira DNA was positive in 6/62 (9.6%) of the wild boars tested. Conclusion: The results of this study confirmed the importance of wild boar in the epidemiology of leptospirosis among wildlife in Southeastern France. Due to their predatory behavior and their varied diet, mainly composed of small mammals, red foxes could be considered sentinel animals of environmental contamination with leptospires.


Sign in / Sign up

Export Citation Format

Share Document