scholarly journals A Study on the Effects of Construction Tolerances on the Current Collection Performance for High Speed Catenary System

2015 ◽  
Vol 64 (12) ◽  
pp. 1782-1788
Author(s):  
Tae-Hun Kim ◽  
Ki-Bum Seo ◽  
Jae-Young Park
2012 ◽  
Vol 251 ◽  
pp. 158-163 ◽  
Author(s):  
Gang Yang ◽  
Zhong Mei Dai ◽  
Fu Li ◽  
Zheng Zhi Luo

The regular current collection is very important for high-speed train, and can be obviously improved by the use of active control. In order to study the impact of the fuzzy active control on pantograph-catenary system, the model ohe simulation model is created with the software of simulink. Finally the influences of fuzzy active control on dynamic performances and quality of current collection of the pantograph-catenary system are analyzed. It seems that, the performances of the system with or without active control is established, the fuzzy controller is constructed, and tf the pantograph- catenary system can be improved obviously under the fuzzy active control, the maximum value of the contact force is reduced to 50 percent, the minimum is increased to 80 percent, and the fluctuation extent of the contact force is reduced to 70 percent.


Author(s):  
Lars Drugge ◽  
Anders Lennartsson ◽  
Annika Stensson Trigell

A vital system on modern high-speed electric trains is the overhead catenary system and the pantograph current collector. As speed limits are increased, train operators and railway engineers need measures of system performance in a number of situations. In this work a laboratory model is built to study the pantograph behaviour on curved track running on a catenary system with large stiffness variation. The model is designed to be simple, yet exhibit the most characteristic dynamic properties of the real system. Another objective is the possibility to run the pantograph at speeds near the wave propagation velocity of the contact wire. The situation of several trailing pantographs, with even spacing, which excites the system to steady state, is considered. Effects of changes in design features such as tension in the contact wire and torsion and translation stiffness of components in the pantograph are studied for different speeds. The interaction is complex and the performance depends on the dynamic properties of both the catenary system and the pantograph. The results show that the pantograph configuration mainly affects the size of amplitudes in the system while the contact wire tension influences at which velocities large amplitudes and contact losses occur.


2021 ◽  
Vol 2021 (4) ◽  
pp. 8-17
Author(s):  
Mokhirbek F. MUKHAMEDZHANOV ◽  

Objective: To develop requirements for the organization of maintenance of the catenary system based on the actual state indicated by the digital diagnostic and monitoring platform in the logic control system for high-speed traffic. Methods: An overview analysis of high-speed catenary system diagnostics and monitoring systems is applied. Results: The systems of monitoring and automated control of catenary system devices in high-speed lines have been studied. The analytical findings as regards the maintenance methods according to the preventive maintenance schedule and based on the actual state monitoring data have been presented. Requirements for diagnostic and monitoring devices 15 of the high-speed lines catenary system have been formulated, aimed at improving the quality attributes of current collection. Practical importance: A structural diagram of quality diagnostics and monitoring for the current collection in the high-speed Current Collector–Catenary system was obtained. The design concept of a prin-cipal model of logic control of the catenary system life cycle has been developed


2018 ◽  
Vol 91 ◽  
pp. 496-506 ◽  
Author(s):  
Xi-Yang Liu ◽  
Jin-Fang Peng ◽  
De-Qiang Tan ◽  
Zhi-Biao Xu ◽  
Jian-Hua Liu ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 58-72
Author(s):  
V. M. Alexeev ◽  
A. V. Vaganov ◽  
M. V. Katina

The article discusses the issues of implementation and organization of high-speed transport. The objective of the article is to consider possible options for implementing highspeed (HS) motion systems using the principle of magnetic levitation, which will ensure high speeds for delivery of goods and carrying people over long distances. To achieve this objective, it is necessary to develop an engine and technical solutions for design of HS rolling stock, make decisions on energy supply infrastructure and the HS track, address safety issues and new control systems considering the state of the infrastructure and its design elements. The article discusses several options for implementation of high-speed transport systems, differing in the power supply system, current collection and track based on the magnetic levitation approach. An original approach is proposed in implementation of magnetic levitation transport using the technology of electromagnetic guns designed to implement traction forces of a magnetic levitation vehicle. The advantage of this approach is that it opens the possibility of maneuvering for the vehicle while driving. This allows to abandon switch turnouts, now significantly limiting the use of magnetic levitation transport. A mathematical model describing interaction of an electromagnetic gun and supermagnets located on the track is considered. In constructing the model, methods of the theory of electromagnetic field and interaction of magnetic bodies were used, and when constructing a model of interaction of rolling stock with a magnetic track, methods of mathematical algebra and the Cauchy theorem were used. The article discusses various principles of organization of movement using the magnetic levitation for urban, suburban, and intercity transport.


Author(s):  
Hang Gong ◽  
Shangdong Zheng ◽  
Zebin Wu ◽  
Yang Xu ◽  
Zhihui Wei ◽  
...  

The small defects in overhead catenary system (OCS) can result in long time delays, economic loss and even passenger injury. However, OCS images exhibit great variations with complex background and oblique views which pose a great challenge for small defects detection in high-speed rail system. In this paper, we propose the spatial-prior-guided attention for small object detection in OCS with two main advantages: (1) The spatial-prior is proposed to retain the spatial information between small defects and the electric components in OCS. (2) Based on spatial-prior, the spatial-prior-guided attention model (SAM) is designed to highlight useful information in the features and suppress redundant features response. SAM can model the spatial relations progressively and can be integrated with state-of-the-art feed-forward network architecture with end-to-end training fashion. We conduct extensive experiments on both Split pin datasets and PASCAL–VOC datasets and achieve 97.2% and 79.5% mAP values, respectively. All the experiments demonstrate the competitive performance of our method.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877394 ◽  
Author(s):  
Ye Han ◽  
Zhigang Liu ◽  
DJ Lee ◽  
Wenqiang Liu ◽  
Junwen Chen ◽  
...  

Maintenance of catenary system is a crucial task for the safe operation of high-speed railway systems. Catenary system malfunction could interrupt railway service and threaten public safety. This article presents a computer vision algorithm that is developed to automatically detect the defective rod-insulators in a catenary system to ensure reliable power transmission. Two key challenges in building such a robust inspection system are addressed in this work, the detection of the insulators in the catenary image and the detection of possible defects. A two-step insulator detection method is implemented to detect insulators with different inclination angles in the image. The sub-images containing cantilevers and rods are first extracted from the catenary image. Then, the insulators are detected in the sub-image using deformable part models. A local intensity period estimation algorithm is designed specifically for insulator defect detection. Experimental results show that the proposed method is able to automatically and reliably detect insulator defects including the breakage of the ceramic discs and the foreign objects clamped between two ceramic discs. The performance of this visual inspection method meets the strict requirements for catenary system maintenance.


Sign in / Sign up

Export Citation Format

Share Document