scholarly journals SUBSTITUTION OF NTO BY HTP IN A BIPROPELLANT RCS

2003 ◽  
Vol 2 (2) ◽  
pp. 22 ◽  
Author(s):  
U. C. Oliveira ◽  
D. J. F. Villas Bôas

The present article presents some theoretical considerations about the implications due the change of the oxidizer in a bipropellant propulsion system. Preliminary analysis conducted on the NTO/UDMH 400 N engine of a roll control system shows that this engine could be capable of operation with HTP90 without significant modification in the design. The new propellant combination is less toxic, can be handled more easily, has a wider operational temperature range, and yields a more amenable thermal environment from the combustion down to the exhaustion. Even with a decrease in liquid film cooling, the HTP90/UDMH engine would present a satisfactory reduction of the combustion chamber temperature and approximately the same performance level of the original NTO/UDMH engine.

2003 ◽  
Vol 2 (2) ◽  
Author(s):  
U. C. Oliveira ◽  
D. J. F. Villas Bôas

The present article presents some theoretical considerations about the implications due the change of the oxidizer in a bipropellant propulsion system. Preliminary analysis conducted on the NTO/UDMH 400 N engine of a roll control system shows that this engine could be capable of operation with HTP90 without significant modification in the design. The new propellant combination is less toxic, can be handled more easily, has a wider operational temperature range, and yields a more amenable thermal environment from the combustion down to the exhaustion. Even with a decrease in liquid film cooling, the HTP90/UDMH engine would present a satisfactory reduction of the combustion chamber temperature and approximately the same performance level of the original NTO/UDMH engine.


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-degree-of-freedom non-linear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-dynamic liquid sloshing model with a tractor–semitrailer model. Initially, to improve the lateral dynamic stability of the vehicle, an active roll control system is developed using classical integral sliding-mode control. The active anti-roll bar is employed as an actuator to generate the roll moment. Next, in order to verify the classical sliding-mode control performance and to eliminate its chattering, the backstepping method and the sliding-mode control method are combined. Subsequently, backstepping sliding-mode control as a new robust control is implemented. Moreover, in order to prevent both yaw instability and jackknifing, an active steering control system is designed on the basis of a simplified three-degree-of-freedom dynamic model of an articulated vehicle carrying a liquid. In the introduced system, the yaw rate of the tractor, the lateral velocity of the tractor and the articulation angle are considered as the three state variables which are targeted in order to track their desired values. The simulation results show that the combined proposed roll control system is more successful in achieving target control and reducing the lateral load transfer ratio than is classical sliding-mode control. A more detailed investigation confirms that the designed active steering system improves both the lateral stability of the vehicle and its handling, in particular during a severe lane-change manoeuvre in which considerable instability occurs.


Author(s):  
Tingting Jing ◽  
Zhen Xu ◽  
Jiachen Xu ◽  
Fei Qin ◽  
Guoqiang He ◽  
...  

1997 ◽  
Author(s):  
G. H. Choi ◽  
K. H. Choi ◽  
J. T. Lee ◽  
Y.S. Song ◽  
Y. Ryu ◽  
...  

Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Film cooling is a common technique to manage turbine vane and blade thermal environment. Optimizing its cooling efficiency is furthermore an active research topic which goes in hand with a strong knowledge of the flow associated with a cooling hole. The following paper aims at developing deeper understanding of the flow physics associated with a standard cooling hole and helping guide future cooling optimization strategies. For this purpose, Large Eddy Simulations (LES) of the 7-7-7 fan-shaped cooling hole [1] is performed and the flow inside the cooling hole is studied and discussed. Use of mathematical techniques such as the Fast Fourier Transforms (FFT) and Dynamic Mode Decomposition (DMD) is done to quantitatively access the flow modal structure inside the hole based on the LES unsteady predictions. Using these techniques, distinct vortex features inside the cooling hole are captured. These features mainly coincide with the roll-up of the internal shear layer formed at the interface of the separation region at the hole inlet. The topology of these vortex features is discussed in detail and it is also shown how the expansion of the cross-section in case of shaped holes aids in breaking down these vortices. Indeed upon escaping, these large scale features are known to not be always beneficial to film cooling effectiveness.


2007 ◽  
Vol 4 (4) ◽  
pp. 145-154
Author(s):  
Kin F. Man ◽  
Alan R. Hoffman

NASA's Mars Exploration Rover (MER) project involved delivering two mobile science laboratories (rovers) on the surface of Mars to remotely conduct geologic investigations, including characterization of a diversity of rocks and soils. The rovers were launched separately in 2003 and have been in operation on the surface of Mars since January 2004. The rovers underwent a comprehensive pre-launch environmental assurance program that included assembly/subsystem and system-level testing in the areas of dynamics, thermal, and electromagnetic (EMC), as well as venting/pressure, dust, radiation, and solid-particle (meteoroid, orbital debris) analyses. Due to the Martian diurnal cycles of extreme temperature swings, the susceptible hardware that were mounted outside of the thermal controlled zones also underwent thermal cycling qualification of their packaging designs and manufacturing processes. This paper summarizes the environmental assurance program for the MER project, with emphasis on the pre-launch thermal testing program for ensuring that the rover hardware would operate and survive the Mars surface temperature extremes. These test temperatures are compared with some of the Mars surface operational temperature measurements. Selected anomalies resulting from operating the rover hardware in the Mars extreme thermal environment are also presented.


Sign in / Sign up

Export Citation Format

Share Document