scholarly journals Assessing the impact of hydropower constructions on functioning of Dniester and Prut rivers ecosystems within the Hydroeconex project

2021 ◽  
Author(s):  
Nadejda Andreev ◽  
◽  
Elena Zubcov ◽  
Antoaneta Ene ◽  
Ilya Trombitsky ◽  
...  

The article reflects on the main issues, research methodologies and achievements of the project HydroEcoNex, a transboundary project carried out by a consortium of research institutes, NGO and a university – Institute of Zoology, International association of river keepers “Eco-Tiras” (Republic of Moldova), ”Dunărea de Jos” University of Galati (Romania), as well as Ukrainian Scientific Center of Ecology of the Sea and Hydrometeorological Center for Black and Azov Seas. Among the main obtained results are the development of a common methodology with various set of indicators for assessing hydropower impact and climate change, assessment of lost ecosystem services, sharing of generated knowledge to students and researchers, endowment of the research laboratories with advanced research equipment.

2019 ◽  
Vol 11 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
A. Mentzafou ◽  
A. Conides ◽  
E. Dimitriou

Abstract Coastal ecosystems are linked to socio-economic development, but simultaneously, are particularly vulnerable to anthropogenic climate change and sea level rise (SLR). Within this scope, detailed topographic data resources of Spercheios River and Maliakos Gulf coastal area in Greece, combined with information concerning the economic value of the most important sectors of the area (wetland services, land property, infrastructure, income) were employed, so as to examine the impacts of three SLR scenarios, compiled based on the most recent regional projections reviewed. Based on the results, in the case of 0.3 m, 0.6 m and 1.0 m SLR, the terrestrial zone to be lost was estimated to be 6.2 km2, 18.9 km2 and 31.1 km2, respectively. For each scenario examined, wetlands comprise 68%, 41% and 39% of the total area lost, respectively, reflecting their sensitivity to even small SLR. The total economic impact of SLR was estimated to be 75.4 × 106 €, 161.7 × 106 € and 510.7 × 106 € for each scenario, respectively (3.5%, 7.5% and 23.7% of the gross domestic product of the area), 19%, 17% and 8% of which can be attributed to wetland loss. The consequences of SLR to the ecosystem services provided are indisputable, while adaptation and mitigation planning is required.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2011 ◽  
Vol 109 (S1) ◽  
pp. 465-484 ◽  
Author(s):  
M. Rebecca Shaw ◽  
Linwood Pendleton ◽  
D. Richard Cameron ◽  
Belinda Morris ◽  
Dominique Bachelet ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 184797901771035
Author(s):  
Donghun Yoon

In this study, research materials for the spatial concentration and utilization sharing of research equipment were surveyed, and then the effect factor and the effectiveness were analyzed based on the research results. Also, information regarding research result creation was provided through research equipment utilization sharing. The research results of 100 researchers (25 national research institutes in the Ministry of Science, ICT (Information and Communications Technologies), and Future Planning of South Korea) were chosen for the effect analysis. For the study results, the medicine and pharmacy researchers showed better performance in research equipment utilization sharing than the natural science and engineering researchers. The number of research paper coauthors and the research equipment utilization sharing execution policy of research institutes influenced the rate of research equipment utilization sharing. The research field, the number of research paper coauthors, the research equipment utilization sharing execution policy of research institutes, and the research institute characteristics influenced the utilization sharing of research equipment in the research environment. Also, the utilization sharing of research equipment was statistically significantly influenced by the number of research papers and the impact factor (IF). The utilization sharing of research equipment was not statistically significantly influenced, however, by the IF mean. In this study, the quantitative performance index was found to be effective, and the qualitative performance index was found to be ineffective. In the analysis model, when the researchers followed the research equipment utilization sharing execution policy of the research institutes, the research results improved.


2018 ◽  
Vol 40 (2) ◽  
pp. 191 ◽  
Author(s):  
Guozheng Hu ◽  
Jocelyn Davies ◽  
Qingzhu Gao ◽  
Cunzhu Liang

The responses of ecosystem functions in Inner Mongolian grasslands to climate change have implications for ecosystem services and sustainable development. Research published in two previous Special Issues of The Rangeland Journal shows that recent climate change added to overgrazing and other factors caused increased degradation of Inner Mongolian rangelands whereas on the Qinghai-Tibetan Plateau, climate change tended to ameliorate the impacts of overgrazing. Recent climate change on the Mongolian Plateau involved warming with increasingly variable annual precipitation and decreased summer rainfall. Future climate projections are different, involving modest increases in precipitation and further climate warming. Research published in the current Special Issue shows that precipitation is the climate factor that has the most substantial impact on ecosystem functions in this region and is positively correlated with plant species diversity, ecosystem carbon exchange and Normalised Difference Vegetation Index. Increased flows of provisioning and regulating ecosystem services are expected with future climate change indicating that its impacts will be positive in this region. However, spatial heterogeneity in the environments and climates of Inner Mongolia highlights the risk of over-generalising from local-scale studies and indicates the value of increased attention to meta-analysis and regional scale models. The enhanced flows of ecosystem services from climate change may support sustainable development by promoting recovery of degraded grasslands with flow-on benefits for livelihoods and the regional economy. However, realising these potential benefits will depend on sound landscape management and addressing the risk of herders increasing livestock numbers to take advantage of the extra forage available. Investment in education is important to improve local capacity to adapt rangeland management to climate change, as are policies and strategies that integrate social, economic and ecological considerations and are tailored to specific regions. Gaps in understanding that could be addressed through further research on ecosystem functions include; belowground carbon exchange processes; the impact of increased variability in precipitation; and the impact of different management practices under changed climates.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


Sign in / Sign up

Export Citation Format

Share Document