scholarly journals Comparative Analysis of Platelet-rich Plasma Effect on Tenocytes from Normal Human Rotator Cuff Tendon and Human Rotator Cuff Tendon with Degenerative Tears

2018 ◽  
Vol 21 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Jeong Yong Yoon ◽  
Seung Yeon Lee ◽  
Sue Shin ◽  
Kang Sup Yoon ◽  
Chris Hyunchul Jo

BACKGROUND: Platelet-rich plasma (PRP) stimulates cell proliferation and enhances matrix gene expression and synthesis. However, there have been no comparative study of the PRP effect on the normal and degenerative tenocytes. The purpose of this study was to compare the effect of PRP on tenocytes from normal and degenerative tendon.METHODS: Tendon tissues were obtained from patients undergoing arthroscopic repair (n=9) and from healthy donors (n=3). Tenocytes were cultured with 10% (vol/vol) platelet-poor plasma, PRP activated with calcium, and PRP activated with calcium and thrombin. The total cell number was assessed at days 7 and 14. The expressions of type I and III collagen, decorin, tenascin-C, and scleraxis were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction. The total collagen and glycosaminoglycan (GAG) synthesis was evaluated at days 7 and 14.RESULTS: No differences were observed between the groups at day 7, but cell proliferation was remarkably increased in tenocytes from the degenerative tendon at day 14. In both tenocyte groups, the gene expressions of type I and III collagen were up-regulated. GAG synthesis was greater in the normal tendon, whereas the expressions of decorin and tenascin-C were increased in tenocytes from the degenerative tendon. Tenocytes from the degenerative tendon had higher fold-change of GAG synthesis and a lower collagen III/I ratio than normal tenocytes.CONCLUSIONS: PRP promoted the cell proliferation and enhanced the synthesis of tendon matrix in both groups. PRP has a greater positive effect on cell proliferation, matrix gene expression and synthesis in tenocytes from degenerative tendon.

2016 ◽  
Vol 25 (10) ◽  
pp. 1561-1570 ◽  
Author(s):  
Salma Chaudhury ◽  
Zhidao Xia ◽  
Dipti Thakkar ◽  
Osnat Hakimi ◽  
Andrew J. Carr

2005 ◽  
Vol 152 (2) ◽  
pp. 242-249 ◽  
Author(s):  
A.M. deGiorgio-Miller ◽  
L.J. Treharne ◽  
R.J. McAnulty ◽  
P.D. Coleridge Smith ◽  
G.J. Laurent ◽  
...  

1990 ◽  
Vol 268 (1) ◽  
pp. 225-230 ◽  
Author(s):  
A E Canfield ◽  
R P Boot-Handford ◽  
A M Schor

Endothelial cells plated on the surface of a two-dimensional substratum (gelatin-coated dishes, dishes coated with native type I collagen or collagen gels) form a cobblestone monolayer at confluence, whereas cells plated within a three-dimensional gel matrix elongate into a sprouting morphology and self-associate into tube-like structures. In this study, we have compared the synthesis of thrombospondin by quiescent endothelial cells displaying (a) the same morphological phenotype (cobblestone) on different substrata (gelatin and collagen) and (b) different morphological phenotypes (cobblestone and sprouting) on the same substratum (collagen). We demonstrate that thrombospondin is a major biosynthetic product of confluent, quiescent cells cultured on dishes coated with either gelatin or collagen, and that the synthesis of this protein is markedly decreased when cells are plated on or in three-dimensional collagen gels. Moreover, we demonstrate that cells plated in gel (sprouting) secrete less thrombospondin than do cells plated on the gel surface (cobblestone). The regulation of thrombospondin synthesis is reversible and occurs at the level of transcription, as steady-state mRNA levels for thrombospondin decrease in a manner comparable with the levels of protein secreted by these cells. We also show that mRNA levels for laminin B2 chains are increased when cells are cultured on and in collagen gels compared with on gelatin-coated dishes, suggesting that the syntheses of thrombospondin and laminin are regulated by different mechanisms. When cells are cultured on gelatin- or collagen-coated dishes, thrombospondin gene expression is directly proportional to the proliferative state of the cultures. By contrast, the synthesis of thrombospondin by cells cultured on collagen gels remains at equally low levels whether they are labelled when they are sparse and rapidly proliferating or when they are confluent and quiescent. Fibronectin synthesis was found to increase with increasing confluency of the cells plated on all three substrata. These results demonstrate that thrombospondin gene expression is modulated by cell shape, cell proliferation and the nature of the substratum used for cell culture.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Kotaro Tanimoto ◽  
Satoru Ohkuma ◽  
Yuki Tanne ◽  
Ryo Kunimatsu ◽  
Naoto Hirose ◽  
...  

The purpose of this study was to investigate the effects of basic fibroblast growth factor (bFGF) treatment on the proliferation and apoptosis of cultured gingival fibroblasts (GFs). Human GFs were isolated from the palatal gingival tissues of 16 healthy volunteers ranging in the age from 9 to 35 years old. Cultured GFs were subjected to the analyses for cell proliferation by ELISA assay, gene expression by RT-PCR analysis, and apoptosis potency by caspase-3 assay. The cell proliferation activity and gene expression of type-I collagen and caspase-3 activity were enhanced significantly by the treatment with bFGF in cultured GFs. Furthermore, the activity of caspase-3 in cultured GFs from young subjects was significantly higher than that in GFs from adults. It is shown that bFGF significantly enhances the gene expression of type-I collagen in cultured fibroblasts from human gingival tissues. It also demonstrated that bFGF modulates the apoptosis of periodontal fibroblasts, and the effect is higher in young subjects, indicating a significant role of bFGF in the prevention of scar formation during wound healing.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chang-Meen Sung ◽  
Ra Jeong Kim ◽  
Young-Sool Hah ◽  
Ji-Yong Gwark ◽  
Hyung Bin Park

Abstract Background Bone mineral density of the humeral head is an independent determining factor for postoperative rotator cuff tendon healing. Bisphosphonates, which are commonly used to treat osteoporosis, have raised concerns regarding their relationships to osteonecrosis of the jaw and to atypical fracture of the femur. In view of the prevalence of rotator cuff tear in osteoporotic elderly people, it is important to determine whether bisphosphonates affect rotator cuff tendon healing. However, no studies have investigated bisphosphonates’ cytotoxicity to human rotator cuff tendon fibroblasts (HRFs) or bisphosphonates’ effects on rotator cuff tendon healing. The purpose of this study was to evaluate the cytotoxicity of alendronate (Ald), a bisphosphonate, and its effects on HRF wound healing. Methods HRFs were obtained from human supraspinatus tendons, using primary cell cultures. The experimental groups were control, 0.1 μM Ald, 1 μM Ald, 10 μM Ald, and 100 μM Ald. Alendronate exposure was for 48 h, except during a cell viability analysis with durations from 1 day to 6 days. The experimental groups were evaluated for cell viability, cell cycle and cell proliferation, type of cell death, caspase activity, and wound-healing ability. Results The following findings regarding the 100 μM Ald group contrasted with those for all the other experimental groups: a significantly lower rate of live cells (p < 0.01), a higher rate of subG1 population, a lower rate of Ki-67 positive cells, higher rates of apoptosis and necrosis, a higher number of cells with DNA fragmentation, higher caspase-3/7 activity (p < 0.001), and a higher number of caspase-3 positive staining cells. In scratch-wound healing analyses of all the experimental groups, all the wounds healed within 48 h, except in the 100 μM Ald group (p < 0.001). Conclusions Low concentrations of alendronate appear to have little effect on HRF viability, proliferation, migration, and wound healing. However, high concentrations are significantly cytotoxic, impairing cellular proliferation, cellular migration, and wound healing in vitro.


2014 ◽  
Vol 96 (18) ◽  
pp. 1558-1565 ◽  
Author(s):  
Alexander Choo ◽  
Meagan McCarthy ◽  
Rajeswari Pichika ◽  
Eugene J Sato ◽  
Richard L Lieber ◽  
...  

Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 430
Author(s):  
Hicham Labazi ◽  
Julie Birkmose Axelsen ◽  
Dianne Hillyard ◽  
Margaret Nilsen ◽  
Asger Andersen ◽  
...  

Right ventricular hypertrophy (RVH) and subsequent failure are consequences of pulmonary arterial hypertension (PAH). While females are four times more likely to develop PAH, male patients have poorer survival even with treatment, suggesting a sex-dependent dimorphism in right ventricular (RV) hypertrophy/compensation. This may result from differential gene expression in the RV in male vs. female. To date, the sex dependent effect of pressure overload on RV function and changes in gene expression is still unclear. We hypothesize that pressure overload promotes gene expression changes in the RV that may contribute to a poorer outcome in males vs. females. To test this hypothesis, male and female Wistar rats underwent either a sham procedure (sham controls) or moderate pulmonary trunk banding (PTB) (a model of pressure overload induced compensated RV hypertrophy) surgery. Seven weeks post-surgery, RV function was assessed in vivo, and tissue samples were collected for gene expression using qPCR. Compared to sham controls, PTB induced significant increases in the right ventricular systolic pressure, the filling pressure and contractility, which were similar between male and female rats. PTB resulted in an increase in RVH indexes (RV weight, RV weight/tibia length and Fulton index) in both male and female groups. However, RVH indexes were significantly higher in male-PTB when compared to female-PTB rats. Whilst end of procedure body weight was greater in male rats, end of procedure pulmonary artery (PA) diameters were the same in both males and females. RV gene expression analysis revealed that the following genes were increased in PTB-male rats compared with the sham-operated controls: natriuretic peptide A (ANP) and B (BNP), as well as the markers of fibrosis; collagen type I and III. In females, only BNP was significantly increased in the RV when compared to the sham-operated female rats. Furthermore, ANP, BNP and collagen III were significantly higher in the RV from PTB-males when compared to RV from PTB-female rats. Our data suggest that pressure overload-mediated changes in gene expression in the RV from male rats may worsen RVH and increase the susceptibility of males to a poorer outcome when compared to females.


2011 ◽  
Vol 111 (6) ◽  
pp. 1575-1583 ◽  
Author(s):  
Sung-Ho Kook ◽  
Yong-Suk Jang ◽  
Jeong-Chae Lee

Type I collagen (COL I) and matrix metalloproteinase-1 (MMP-1) are the predominant matrix proteins in the extracellular matrix of the human periodontal ligament (PDL). The expression of these proteins in PDL fibroblasts (PLF) is sensitive to physiological and mechanical stress and is critical for PDL remodeling accompanied by alveolar bone remodeling. This study examined how dose tensile force regulates the expression of COL I and MMP-1 and explored the possible roles of mitogen-activated protein kinases (MAPKs) and transcription factors, such as activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). Tensile force stimulated the mRNA expression of COL I and MMP-1 in the cells and also activated MAPKs including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPK. A pharmacological inhibitor of ERK or JNK prevented the expression of matrix genes and the nuclear translocation of c-Jun proteins in the force-applied PLF. The knockdown of c-Jun by transfecting the cells with its antisense oligonucleotides reduced the force-induced increase in matrix gene expression. In particular, the ERK inhibitor but not JNK or p38 MAPK inhibitor attenuated the force-mediated stimulation of NF-κB-DNA binding and MMP-1 expression. Overall, these results highlight the mechanotransduction pathways involved in matrix gene expression in PLF, where the tension-stimulated expression of COL I and MMP-1 is controlled by the ERK/JNK-AP-1 and ERK-NF-κB signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document