scholarly journals Hazardous Materials Transportation with Multiple Objectives: A Case Study in Taiwan

Author(s):  
Ta-Yin Hu ◽  
Ya-Han Chang

Hazardous material (hazmat) transportation has been an important issue for handling hazardous materials, such as gases and chemical liquids. In the past, researchers have made great efforts to develop policies and route planning methods for hazmat transportation problems. In 2014, Kaohsiung City in Taiwan suffered a gas pipeline explosion at midnight; 32 people were killed, and hundreds of people were injured. After the incident, policies and routing strategies for hazardous materials (hazmat) transportation in Kaohsiung were initiated to avoid pipeline transportation. Although methodologies for hazmat transportation have been proposed and implemented to minimize potential risks, multiple objectives need to be considered in the process to facilitate hazmat transportation in Taiwan. In order to consider both government and operators’ aspects, a multi-objective formulation for the hazmat problem is proposed and a compromise programming method is applied to solve the problem with two objectives: travel cost and risk. The path risk is defined based on risk assessment indexes, such as road characteristics, population distribution, link length, hazardous material characteristics, and accident rates. An aggregate risk indicator is proposed for roadway segments. The compromise programming approach is developed from the concept of compromise decision and the main idea is to search the compromise solution closest to the ideal solution. The proposed method is applied to Kaohsiung City, Taiwan. The results show that two conflicting objectives keep making trade-offs between each other until they finally reach a compromise solution.

Author(s):  
G. Sulijoadikusumo ◽  
L. Nozick

Good routing and scheduling decisions for hazardous materials shipments often require the explicit consideration of multiple objectives. Also, the performance of the relevant facilities in the transportation system typically varies by time of day with respect to many of these objectives. The authors discuss the reliability and performance of a heuristic that can be used to identify good routes and schedules for hazardous material shipments. Presented is the second part of a two-part analysis. The first part described a method for performing an integrated routing/ scheduling analysis with multiple objectives when the arc attributes are time variant. This part discusses the quality of that analysis and additional heuristics that can be used to improve the quality of the solution generated.


Computers ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 15
Author(s):  
Son Tung Ngo ◽  
Jafreezal Jaafar ◽  
Izzatdin Abdul Aziz ◽  
Bui Ngoc Anh

The problem of scheduling is an area that has attracted a lot of attention from researchers for many years. Its goal is to optimize resources in the system. The lecturer’s assigning task is an example of the timetabling problem, a class of scheduling. This study introduces a mathematical model to assign constrained tasks (the time and required skills) to university lecturers. Our model is capable of generating a calendar that maximizes faculty expectations. The formulated problem is in the form of a multi-objective problem that requires the trade-off between two or more conflicting objectives to indicate the optimal solution. We use the compromise programming approach to the multi-objective problem to solve this. We then proposed the new version of the Genetic Algorithm to solve the introduced model. Finally, we tested the model and algorithm with real scheduling data, including 139 sections of 17 subjects to 27 lecturers in 10 timeslots. Finally, a web application supports the decision-maker to visualize and manipulate the obtained results.


2019 ◽  
Vol 11 (9) ◽  
pp. 2577 ◽  
Author(s):  
Yan Sun ◽  
Xinya Li ◽  
Xia Liang ◽  
Cevin Zhang

Hazardous materials transportation involves extensive risk and cannot be avoided in practice. An advanced routing, however, can help to reduce the risk by planning the best transportation routes for hazardous materials that can make effective tradeoffs between the risk objective and the economic objective. In this study, we explore the hazardous materials routing problem in the road-rail multimodal transportation network with a hub-and-spoke structure, in which the risk is measured by the multiplication of population exposure and the associated volume of hazardous materials, and minimizing the total risk of all the transportation orders of hazardous materials is set as the risk objective. It is difficult to estimate the population exposure exactly during the routing decision-making process, which results in its uncertainty. In this study, we formulate the uncertain population exposure from a fuzzy programming perspective by using triangular fuzzy numbers. Moreover, the carbon dioxide emission constraint is formulated to realize the sustainable transportation of hazardous materials. To optimize the problem under the above framework, we first establish a bi-objective fuzzy mixed integer nonlinear programming model, and then develop a three-stage exact solution strategy that the combines fuzzy credibilistic chance constraint, linearization technique, and the normalized weighting method. Finally, a computational experiment is carried out to verify the feasibility of the proposed method in dealing with the problem. The experimental results indicate that tradeoffs between the two conflicting objectives can be effectively made by using the Pareto frontier to the hazardous materials routing problem. Furthermore, the credibility level and carbon dioxide emission cap significantly influence the hazardous materials routing optimization. Their effects on the optimization result are quantified by using sensitivity analysis, which can draw some useful insights to help decision makers to better organize the hazardous materials road-rail multimodal transportation under uncertainty and sustainability.


2011 ◽  
Vol 361-363 ◽  
pp. 1230-1239
Author(s):  
Zong Feng Zou ◽  
Bao Quan Zhang

The related issues of hazardous materials transportation in recent years are summarized and reviewed from the following aspects: hazardous materials transportation risk evaluation models, road routing models, the application of related technology, early warning for emergency response and joint action mechanism and platform construction, the research situation and development pattern of unified monitoring platform, etc. Analysis shows that it is essential to establish more in-depth and scientific quantitative models based on the attainment of more comprehensive and continuous data as well as the consideration of various constraints. It is a direction for future research to develop comprehensive application of technology and to establish HAZMAT transportation joint control platform in large area, and the leading and facilitating role of government should be paid more attention on joint control platform construction in large area.


Author(s):  
Huizhuo Cao ◽  
Xuemei Li ◽  
Vikrant Vaze ◽  
Xueyan Li

Multi-objective pricing of high-speed rail (HSR) passenger fares becomes a challenge when the HSR operator needs to deal with multiple conflicting objectives. Although many studies have tackled the challenge of calculating the optimal fares over railway networks, none of them focused on characterizing the trade-offs between multiple objectives under multi-modal competition. We formulate the multi-objective HSR fare optimization problem over a linear network by introducing the epsilon-constraint method within a bi-level programming model and develop an iterative algorithm to solve this model. This is the first HSR pricing study to use an epsilon-constraint methodology. We obtain two single-objective solutions and four multi-objective solutions and compare them on a variety of metrics. We also derive the Pareto frontier between the objectives of profit and passenger welfare to enable the operator to choose the best trade-off. Our results based on computational experiments with Beijing–Shanghai regional network provide several new insights. First, we find that small changes in fares can lead to a significant improvement in passenger welfare with no reduction in profitability under multi-objective optimization. Second, multi-objective optimization solutions show considerable improvements over the single-objective optimization solutions. Third, Pareto frontier enables decision-makers to make more informed decisions about choosing the best trade-offs. Overall, the explicit modeling of multiple objectives leads to better pricing solutions, which have the potential to guide pricing decisions for the HSR operators.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1091 ◽  
Author(s):  
Zhang ◽  
Feng ◽  
Yang ◽  
Ding

Hazardous materials (HAZMAT) are important for daily production in cities, which usually have a high population. To avoid the threat to public safety and security, the routes for HAZMAT transportation should be planned legitimately by mitigating the maximum risk to population centers. For the objective of min-max local risk in urban areas, this study has newly proposed an optimization model where the service of a link for HAZMAT transportation was taken as the key decision variable. Correspondingly, the symmetric problem of min-max optimization takes significant meanings. Moreover, in consideration of the work load of solving the model under a lot of decision variables, a heuristic algorithm was developed to obtain an optimal solution. Thereafter, a case study was made to test the proposed model and algorithm, and the results were compared with those generated by deterministic solving approaches. In addition, this research is able to be an effective reference for authorities on the management of HAZMAT transportation in urban areas.


Sign in / Sign up

Export Citation Format

Share Document