scholarly journals Development of Topical Niosomal Gel of Benzoyl Peroxide

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Jigar Vyas ◽  
Puja Vyas ◽  
Dhaval Raval ◽  
Paresh Paghdar

Benzoyl peroxide is macrolide antibiotic used commonly for the treatment of acne either alone or in combination. But it suffers from side effects like skin redness, irritation, itching, and edema. Niosomes, a nonionic surfactant vesicular formulation, have been explored extensively for topical application to enhance skin penetration as well as to improve skin retention of drugs. In the present study, Benzoyl peroxide was entrapped into niosomes by thin film hydration technique, and various process parameters were optimized by partial factorial design. The optimized niosomal formulation was incorporated into HPMC K15 gel and extensively characterized for percentage drug entrapment (PDE) and in vitro release performance. The stability of above formulation was studied at different temperatures. The present study demonstrated prolongation of drug release, increased drug retention into skin, and improved permeation across the skin after encapsulation of benzoyl peroxide into niosomal topical gel.

2014 ◽  
Vol 12 (2) ◽  
pp. 119-123
Author(s):  
MS Ashwini ◽  
Mohammed Gulzar Ahmed

The study was designed for the investigation of pulsatile device to achieve time or site specific release of Losartan potassium based on chronopharmaceutical considerations. The basic design involves the preparation of cross linked hard gelatin capsules by using formaldehyde, then the drug diluent mixture were prepared and loaded in, which was separated by using hydrogel plugs of different polymers of different viscosities. Prepared formulations were subjected to evaluation of various parameters like weight variation, percentage drug content, in vitro drug release and stability studies. Weight variation and percentage drug content results showed that they were within the limits of official standards. The in-vitro release studies revealed that the capsules plugged with polymer HPMC showed better pulsatile or sustained release property as compared to the other formulations. The stability studies were carried out for all the formulations and formulations F1 & F2 were found to be stable. Dhaka Univ. J. Pharm. Sci. 12(2): 119-123, 2013 (December) DOI: http://dx.doi.org/10.3329/dujps.v12i2.17610


Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


2021 ◽  
Vol 14 (10) ◽  
pp. 1033
Author(s):  
Lupe Carolina Espinoza ◽  
Lilian Sosa ◽  
Paulo C. Granda ◽  
Nuria Bozal ◽  
Natalia Díaz-Garrido ◽  
...  

The higher molecular weight and low solubility of amphotericin B (AmB) hinders its topical administration. The aim of this study was to incorporate Bursera graveolens essential oil into an AmB topical gel (AmB + BGEO gel) in order to promote the diffusion of the drug through the skin in the treatment of cutaneous candidiasis. AmB + BGEO gel formulation was determined using a factorial experiment. Physical and chemical parameters, stability, in vitro release profile and ex vivo permeation in human skin were evaluated. In vitro antimicrobial activity was studied using strains of C. albicans, C. glabrata and C. parapsilosis. The tolerability was evaluated using in vitro and in vivo models. AmB + BGEO gel presented appropriate characteristics for topical administration, including pH of 5.85, pseudoplastic behavior, optimal extensibility, as well as high stability and acceptable tolerability. In vitro release studies showed that the formulation releases the drug following a Boltzmann sigmoidal model. Finally, AmB + BGEO gel exhibited higher amount of drug retained inside the skin and lower Minimum Inhibitory Concentration than a formulation sans essential oil. Therefore, these results suggest that the incorporation of B. graveolens essential oil in the formulation could be used as strategy to promote a local effect in the treatment of cutaneous candidiasis.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 70-70
Author(s):  
Janghan Choi ◽  
Lucy Wang ◽  
Joshua Gong ◽  
Ludovic Lahaye ◽  
Song Liu ◽  
...  

Abstract Essential oils are defined as plant-derived natural bioactive compounds with positive effects on animal growth and health due to their antimicrobial and antioxidative properties. However, essential oils are very volatile, can evaporate rapidly and be rapidly absorbed in the upper gastrointestinal tract. In addition, due to their labile nature, the stability of essential oils during feed processing is often questionable, leading to variable final concentrations in feeds. Micro-encapsulation has become one of the most popular methods to deliver essential oils into the lower gut. The objective of the present study was double: 1) to validate and demonstrate the slow release of essential oils, such as thymol, micro-encapsulated in combination with organic acids in a matrix of triglycerides, in simulated swine gastric and intestinal fluids and 2) to evaluate the essential oil stability in the microparticles during feed pelleting process. In the in vitro release experiments, the microparticles were incubated in simulated gastric fluids for 2 hours and then the samples were incubated in simulated intestinal fluids for 0, 1, 2, 3, 4, 6, 8, 10, and 24 hours at 39°C. In the pelleting experiment, a wheat-corn basal diet with 2 kg of micro-encapsulated product was formulated and pelleted. The thymol content in the samples was analyzed by gas chromatography with flame-ionization detection. The results showed that 27.65% thymol was released in simulated gastric fluids and the rest of thymol was progressively released in intestinal fluids until completion, which was achieved by 24 hours. The thymol concentration was not significantly different between the mash feeds and pelleted feeds (P > 0.05). In conclusion, the micro-encapsulated organic acid and essential oil product was able to maintain the stability of thymol under a commercial pelleting process and allow a slow and progressive release of its active ingredients as thymol in simulated digestive fluids.


2015 ◽  
Vol 45 (3) ◽  
pp. 311-317 ◽  
Author(s):  
Sayed Hassan Auda ◽  
Saleh Abd El-Rasoul ◽  
Mahmoud Mohamed Ahmed ◽  
Shaaban Khalaf Osman ◽  
Mahmoud El-Badry

INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (06) ◽  
pp. 11-17
Author(s):  
S. S Wagle ◽  
◽  
A. P., Gadad ◽  
P. M. Dandagi ◽  
A. S Patil

Oxiconazole nitrate is antifungal drug having low solubility. An attempt was made to increase the solubility by solid dispersion technique. Twelve solid dispersion formulations were prepared by solvent evaporation and kneading method using β-cyclodextrin and 2-hydroxypropyl β-cyclodextrin as carrier. In vitro release profiles of all solid dispersions were evaluated and were compared with that of pure drug. Optimized formulation (F-3) was then incorporated in gel using Carbopol 940p as gelling agent. The formulated gel was evaluated for various parameters like percentage yield, drug content, pH, viscosity, spreadability, extrudability, drug content, in vitro drug release, in vitro kinetics, antifungal properties, skin irritation and stability studies. The percentage yield obtained was 98.9% and the pH was 6.83. The viscosity was 50,000cp and also showed good spreadability and extrudability. Drug content was found to be 91.6%. The gel formulation showed in vitro release 92.48% whereas marketed formulation showed 76.66% at the end of 8 hrs. The antifungal activity showed greater zone of inhibition than that of marketed formulation and there was no skin irritation on rats. Hence, complex incorporated in gel can be a potential method to improve the solubility of poorly water soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document