scholarly journals An In Vitro Comparative Study of Intracanal Fluid Motion and Wall Shear Stress Induced by Ultrasonic and Polymer Rotary Finishing Files in a Simulated Root Canal Model

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jon Koch ◽  
John Borg ◽  
Abby Mattson ◽  
Kris Olsen ◽  
James Bahcall

Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software.

Author(s):  
Jennifer Dolan ◽  
Sukhjinder Singh ◽  
Hui Meng ◽  
John Kolega

Cerebral aneurysms tend to develop at bifurcation apices or the outer side of curved vessels where the blood vessel wall experiences complex hemodynamics. In vivo studies have recently revealed that the initiation of cerebral aneurysms is confined to a well-defined hemodynamic microenvironment. Specifically aneurysms form where the vessel wall experiences high fluid shear stress (wall shear stress, WSS) and flow is accelerating, so that the wall is exposed to a positive spatial gradient in the fluid shear stress (wall shear stress gradient, WSSG)[1,2]. Closer examination of such in vivo studies reveals that exposure of the vessel wall to equally high WSS in the presence of decelerating flow, that is, negative WSSG, does not result in aneurysm-like remodeling.


1997 ◽  
Vol 136 (3) ◽  
pp. 717-727 ◽  
Author(s):  
Michael B. Lawrence ◽  
Geoffrey S. Kansas ◽  
Eric J. Kunkel ◽  
Klaus Ley

Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.


2020 ◽  
Vol 17 (168) ◽  
pp. 20190884
Author(s):  
S. Lee ◽  
N. Kwok ◽  
J. Holsapple ◽  
T. Heldt ◽  
L. Bourouiba

The treatment of hydrocephalus often involves the placement of a shunt catheter into the cerebrospinal ventricular space, though such ventricular catheters often fail by tissue obstruction. While diverse cell types contribute to the obstruction, astrocytes are believed to contribute to late catheter failure that can occur months after shunt insertion. Using in vitro microfluidic cultures of astrocytes, we show that applied fluid shear stress leads to a decrease of cell confluency and the loss of their typical stellate cell morphology. Furthermore, we show that astrocytes exposed to moderate shear stress for an extended period of time are detached more easily upon suddenly imposed high fluid shear stress. In light of these findings and examining the range of values of wall shear stress in a typical ventricular catheter through computational fluid dynamics (CFD) simulation, we find that the typical geometry of ventricular catheters has low wall shear stress zones that can favour the growth and adhesion of astrocytes, thus promoting obstruction. Using high-precision direct flow visualization and CFD simulations, we discover that the catheter flow can be formulated as a network of Poiseuille flows. Based on this observation, we leverage a Poiseuille network model to optimize ventricular catheter design such that the distribution of wall shear stress is above a critical threshold to minimize astrocyte adhesion and growth. Using this approach, we also suggest a novel design principle that not only optimizes the wall shear stress distribution but also eliminates a stagnation zone with low wall shear stress, which is common to current ventricular catheters.


2021 ◽  
Vol 22 (11) ◽  
pp. 5635
Author(s):  
Katharina Urschel ◽  
Miyuki Tauchi ◽  
Stephan Achenbach ◽  
Barbara Dietel

In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as “wall shear stress (WSS)”, and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.


1986 ◽  
Vol 83 (7) ◽  
pp. 2114-2117 ◽  
Author(s):  
P. F. Davies ◽  
A. Remuzzi ◽  
E. J. Gordon ◽  
C. F. Dewey ◽  
M. A. Gimbrone

Author(s):  
Han-Sheng Chuang ◽  
Steven T. Wereley

Conventional single pixel evaluation (SPE) significantly improves the spatial resolution of PIV measurements to the physical limit of a CCD camera based on the forward difference interrogation (FDI). This paper further enhances the computational algorithm to second-order accuracy by simply modifying the numerical scheme with the central difference interrogation (CDI). The proposed central difference scheme basically superposes the forward-time and the backward-time correlation domains, thus resulting in reduced bias error as well as rapid background noise elimination. An assessment of the CDI SPE algorithm regarding the measurement errors was achieved via numerous synthetic images subject to a four-roll mill flow. In addition, preliminary wall shear stress (WSS) measurements regarding different algorithms are also evaluated with an analytical turbulent boundary flow. CDI scheme showed a 0.32% error deviated from the analytical solution and improved the same error in FFT-based correlation correlation (FFT-CC) by 32.35%. To demonstrate the performance in practice, in-vitro measurements were implemented in a serpentine microchannel made of polydimethyl siloxane (PDMS) for both CDI SPE and spatial cross-correlation. A series of steady-state flow images at five specified regions of interest were acquired using micro-PIV system. Final comparisons of the WSS regarding the Pearson correlation coefficient, R2, between the numerical schemes and the simulations showed that an overall result was improved by CDI SPE due to the fine resolution and the enhanced accuracy.


2020 ◽  
Author(s):  
Thomas Brendan Smith ◽  
Alessandro Marco De Nunzio ◽  
Kamlesh Patel ◽  
Haydn Munford ◽  
Tabeer Alam ◽  
...  

Fluid shear stress is a key modulator of cellular physiology in vitro and in vivo, but its effects are under-investigated due to requirements for complicated induction methods. Herein we report the validation of ShearFAST; a smartphone application that measures the rocking profile on a standard laboratory cell rocker and calculates the resulting shear stress arising in tissue culture plates. The accuracy with which this novel approach measured rocking profiles was validated against a graphical analysis, and also against measures reported by an 8-camera motion tracking system. ShearFASTs angle assessments correlated well with both analyses (r ≥0.99, p ≤0.001) with no significant differences in pitch detected across the range of rocking angles tested. Rocking frequency assessment by ShearFAST also correlated well when compared to the two independent validatory techniques (r ≥0.99, p ≤0.0001), with excellent reproducibility between ShearFAST and video analysis (mean frequency measurement difference of 0.006 ± 0.005Hz) and motion capture analysis (mean frequency measurement difference of 0.008 ± 0.012Hz). These data make the ShearFAST assisted cell rocker model make it an attractive approach for economical, high throughput fluid shear stress experiments. Proof of concept data presented reveals a protective effect of low-level shear stress on renal proximal tubule cells submitted to simulations of pretransplant storage.


Sign in / Sign up

Export Citation Format

Share Document