scholarly journals Demand Based Cost Optimization of Electric Bills for Household Users

Author(s):  
Nabeel Tawalbeh ◽  
Mohammad Malkawi ◽  
Hanan Abusamaha ◽  
Sahban Alnaser

Abstract- Internet of Things (IoT) is increasingly becoming the vehicle to automate, optimize and enhance the performance of systems in the energy, environment, and health sectors. In this paper, we use Wi-Fi wrapped sensors to provide online and in realtime the current energy consumptions at a device level, in a manner to allow for automatic control of peak energy consumption at a household, factory level, and eventually at a region level, where a region can be defined as an area supported by a distinct energy source. This allows to decrease the bill by avoiding heavily and controllable loads during high tariff slice and/or peak period per household and to optimize the energy production and distribution in a given region. The proposed model relies on adaptive learning techniques to help adjust the current load, while taking into consideration the actual and real need of the consumer. The experiments used in this study makes use of current and voltage sensors, Arduino platform, and simulation system. The main performance indexes used are the control of a peak consumption level, and the minimum time needed to adjust the distribution of load in the system. The system was able to keep the maximum load at a maximum of 10 kW in less than 10 seconds of response time. The level and response time are controllable parameters.

Author(s):  
Muthuraman Yuvaraj ◽  
Kizhaeral Sevathapandian Subramanian

Nanotechnology deals with atom-by-atom manipulation and the strategies and products developed are quite precise. Despite the fact that the nanotechnology is noticeably exploited in the subject of energy, environment and health, the research is agricultural sciences had just scratched the surface. However, the potentials of nanotechnology in agricultural sciences had been reviewed. Among the applications, nanofertilizers technology is very revolutionary and known to exhibit economic advantage if the products advanced are economically feasible and socially sustainable. These nano fertilizers are pronounced to reduce nutrient loss due to leaching, emissions, and long-term incorporation by soil microorganisms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Amjad Ali ◽  
Hongwu Liu ◽  
Ali Kashif Bashir ◽  
Shaker El-Sappagh ◽  
Farman Ali ◽  
...  

In recent days, vehicles have been equipped with smart devices that offer various multimedia-related applications and services, such as smart driving assistance, traffic congestions, weather forecasting, road safety alarms, and many entertainment and comfort applications. Thus, these smart vehicles produce a large amount of multimedia-related data that require fast and real-time processing. However, due to constrained computing and storage capacities, such huge amounts of multimedia-related data cannot be processed in on-board standalone devices. Thus, multimedia cloud computing (MCC) has emerged as an economical and scalable computing technology that can process multimedia-related data efficiently while providing improved Quality of Service (QoS) to vehicular users from anywhere, at any time and on any device, at reduced costs. However, there are certain challenges, such as fast service response time and resource cost optimization, that can severely affect the performance of the MCC. Therefore, to tackle these issues, in this paper, we propose a dynamic priority-based architecture for the MCC. In the proposed scheme, we divide multimedia processing into four different subphases, while computing resources to each computing server are assigned dynamically, according to the workload, in order to process multimedia tasks according to the multimedia user Quality of Experience (QoE) requirements. The performance of the proposed scheme is evaluated in terms of service response time and resource cost optimization using the CloudSim simulator.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 204 ◽  
Author(s):  
Mariela Toriello ◽  
Morteza Afsari ◽  
Ho Kyong Shon ◽  
Leonard D. Tijing

Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.


2014 ◽  
Vol 543-547 ◽  
pp. 3499-3502
Author(s):  
Fang Li ◽  
Li Fang Wang

Controller Area Network (CAN) is widely used in automotive and industrial areas. To give guidance in the design process, CAN bus communication model is established using Matlab/SimulinkTM. Considering the error frames on the bus, the formula that calculating CAN response time and bus load is revised. The relating performance indexes of CAN bus is gained separately through calculation and simulation, it concludes that the CAN bus communication model can efficiently simulate the message transfer sequences in the real bus, and achieves an exact result of the performance analysis of the CAN bus system.


2009 ◽  
Vol 1209 ◽  
Author(s):  
Lionel Vayssieres

AbstractThe necessity of materials development which is not limited to materials that can achieve their theoretical limits, but makes it possible to raise theoretical limits by changing the fundamental underlying physics and chemistry while keep the fabrication cost to a minimum is crucial. Materials nanotechnologies based on chemical fabrication approaches is one of the immediate answer to the enormous need for cost-effective new materials for energy, environment, and health. R&D exploiting chemical nanoscience and nanotechnology has the greatest potential to efficiently contribute to such challenging goals. Indeed, the creation of new materials with higher performance and improved stability achieved by atomic, molecular and nanostructural design and control using unique nanoscale phenomena such as quantum confinements is the key. A synthesis involving the aqueous condensation of metal ions from solutions of metal salts for the low-cost fabrication of engineered arrays consisting of oriented nanorods of metal oxides orientations onto various substrates as well as the ability to control the surface acidity of quantum dots from acidic to neutral to basic by size effect are presented.


Sign in / Sign up

Export Citation Format

Share Document