scholarly journals ENZYME BIOCATALYSIS IN ORGANIC SYNTHESIS

Author(s):  
F Yaseen ◽  
A Siddique ◽  
N Idrees ◽  
A Fateh ◽  
R Ahmad ◽  
...  

The factor that makes enzyme biocatalysts for organic synthesis both fascinating and challenging from a scientific standpoint is the field's higher interdisciplinarity, and which necessitates expertise from a wide range of disciplines, including microbiology, organic synthesis, molecular biology, genetics, and reaction engineering. Enzymes can now carry out a wide variety of organic reactions, including hydrolytic reactions, redox reactions, and C-C bond formations, with higher performance. Enzyme catalysis has also evolved into a widely used manufacturing technology in the chemical industry, especially in the fields of fine organic chemicals and pharmaceuticals. More advances in molecular modeling for enzyme-catalysis syntheses are expected, allowing for a greater number of biocatalytic techniques based on the enzymes that have been optimized or engineered by rationalized protein engineering. The organic chemists mostly have successfully used these custom-made biocatalysts (the isolated pure enzymes, the recombinant genetically modified microorganisms, also known as the designer cells), an important milestone in the enzyme catalysis process in organic synthesis is into generally accepted synthetic technology for academia as well as industries.

2020 ◽  
Vol 24 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Shima Roshankar ◽  
Fatemeh Mohajer ◽  
Alireza Badiei

Abstract:: Mesoporous silica nanomaterials provide an extraordinary advantage for making new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts, are used for a wide range of organic synthesis. The importance of the chiral ligands, which were immobilized on the SBA-15, was mentioned in this review to achieve chiral products as valuable target molecules. Herein, their synthesis and application in different organic transformations are reviewed from 2016 till date 2020.


2019 ◽  
Vol 23 (6) ◽  
pp. 643-678
Author(s):  
Lalthazuala Rokhum ◽  
Ghanashyam Bez

Recent years have witnessed a fast development of solid phase synthetic pathways, a variety of solid-supported reagent and its applications in diverse synthetic strategies and pharmaceutical applicability’s. Polymer-supported triphenylphosphine is getting a lot of applications owing to the speed and simplicity in the process. Furthermore, ease of recyclability and reuse of polymer-supported triphenylphosphine added its advantages. This review covers a wide range of useful organic transformations which are accomplished using cross-linked polystyrene-supported triphenylphosphine with the aim of giving renewed interest in the field of organic and medicinal-combinatorial chemistry.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


Hand Surgery ◽  
1996 ◽  
Vol 01 (01) ◽  
pp. 37-43 ◽  
Author(s):  
Eng-Lye Leow ◽  
Anam-Kueh Kour ◽  
Barry P. Pereira ◽  
Robert W.H. Pho

The wide range of skin tones in the Asian population presents a challenge when colour-matching hand and finger prostheses. It requires that the prostheses be custom-made to better match the wide variations. We have developed a finger and hand prosthesis using a multi-layered moulding technique incorporating a colour-matching procedure capable of reproducing the colour tones and life-like appearance of the skin. Between 1990–1994, we have fitted these prostheses to a total of 109 patients. In evaluating the colour-match of their prostheses, 84% of the patients fitted with hand prostheses and 78% of those fitted with finger prostheses had a good to excellent match. This paper discusses some of the challenges we face in colour-matching hand and finger prostheses in the Asian population.


1996 ◽  
Vol 30 (11) ◽  
pp. 720-721
Author(s):  
T. A. Taktashkina ◽  
I. P. Zaitseva ◽  
S. B. Germanov ◽  
F. V. Guss

2016 ◽  
Vol 80 (2) ◽  
pp. 451-493 ◽  
Author(s):  
Chris Greening ◽  
F. Hafna Ahmed ◽  
A. Elaaf Mohamed ◽  
Brendon M. Lee ◽  
Gunjan Pandey ◽  
...  

SUMMARY5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420in methanogenic archaea in processes such as substrate oxidation, C1pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid byMycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Foand F420are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.


2021 ◽  
Vol 25 ◽  
Author(s):  
Saima malik ◽  
Aditya G. Lavekar ◽  
Bimal Krishna Banik

: The radical was first come into existence in 1900 by Gomberg, where the triphenylmethane radical was explored. Thus, even to date, two centuries have seen radical chemistry as the methodology of preference in organic synthesis. Due to the fascinating nature of the radical-mediated cyclization reactions, it always caught the eye of organic chemists for the synthesis of novel organic compounds with diverse stereochemistry. Moreover, the development of radical methods further proves beneficial for the synthesis by providing atom- and step-economical methods to complex molecules. Among these, where radical chemistry has been employed, the use of tin-based radical annulation is the most common and widely used field for the synthesis of a wide range of organic reactions with medicinal importance. In this review, we compiled recent tin-mediated radical cyclization reactions toward the synthesis of molecules of biological significance.


Sign in / Sign up

Export Citation Format

Share Document