Modeling of Deep Learning based Intrusion Detection System in Internet of Things Environment

2021 ◽  
pp. 17-25
Author(s):  
Mohammad Hammoudeh ◽  
◽  
◽  
Saeed M. Aljaberi

The Internet of Things (IoT) has become a hot popular topic for building a smart environment. At the same time, security and privacy are treated as significant problems in the real-time IoT platform. Therefore, it is highly needed to design intrusion detection techniques for accomplishing security in IoT. With this motivation, this study designs a novel flower pollination algorithm (FPA) based feature selection with a gated recurrent unit (GRU) model, named FPAFS-GRU technique for intrusion detection in the IoT platform. The proposed FPAFS-GRU technique is mainly designed to determine the presence of intrusions in the network. The FPAFS-GRU technique involves the design of the FPAFS technique to choose an optimal subset of features from the networking data. Besides, a deep learning based GRU model is applied as a classification tool to identify the network intrusions. An extensive experimental analysis takes place on KDDCup 1999 dataset, and the results are investigated under different dimensions. The resultant simulation values demonstrated the betterment of the FPAFS-GRU technique with a higher detection rate of 0.9976.

Internet of things (IoT) is an emerging concept which aims to connect billions of devices with each other anytime regardless of their location. Sadly, these IoT devices do not have enough computing resources to process huge amount of data. Therefore, Cloud computing is relied on to provide these resources. However, cloud computing based architecture fails in applications that demand very low and predictable latency, therefore the need for fog computing which is a new paradigm that is regarded as an extension of cloud computing to provide services between end users and the cloud user. Unfortunately, Fog-IoT is confronted with various security and privacy risks and prone to several cyberattacks which is a serious challenge. The purpose of this work is to present security and privacy threats towards Fog-IoT platform and discuss the security and privacy requirements in fog computing. We then proceed to propose an Intrusion Detection System (IDS) model using Standard Deep Neural Network's Back Propagation algorithm (BPDNN) to mitigate intrusions that attack Fog-IoT platform. The experimental Dataset for the proposed model is obtained from the Canadian Institute for Cybersecurity 2017 Dataset. Each instance of the attack in the dataset is separated into separate files, which are DoS (Denial of Service), DDoS (Distributed Denial of Service), Web Attack, Brute Force FTP, Brute Force SSH, Heartbleed, Infiltration and Botnet (Bot Network) Attack. The proposed model is trained using a 3-layer BP-DNN


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1977 ◽  
Author(s):  
Geethapriya Thamilarasu ◽  
Shiven Chawla

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.


2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


Big data is the huge amount of data with different types of V’s: Velocity, Variety as well as Volume. It can be semi-structured, unstructured or structured, due to which it is not easy to analyze the data. To extract the hidden knowledge and to detect the attacks on large amount of data new architecture, techniques, algorithms, and analytics are required. Using traditional techniques to detect attacks is very difficult. In this paper, the detailed review has been done on intrusion detection on various fields using deep learning and gives an idea of applications of deep learning. The number of attacks has been increased in computer networks. A powerful Intrusion Detection System (IDS) is required to ensure the security of a network. Based on review, it is found that some studies have been done in this field, but a deep and exhaustive work has still not been done. Many researchers proposed an IDS using deep learning for unforeseen and unpredictable attacks but not for Big Data. The proposed work is based on Deep learning based intrusion detection System for big datasets named hybrid-DeepResNet-RNN run till 1,000 epochs with learning rate varying range [0.01-0.5] and three ensemble techniques, Random Forest, Decision tree regression and Gradient Boosting Tree (GBT). It is used to develop the hybrid, secure, scalable NIDS which is based on deep learning and big data techniques. The proposed classifiers produce a more reliable classification than a single classifier. The experimental results are in terms of detection rate (98.86%), false positive rate (1.110%), accuracy (99.34%) and F-Measure (97.90%). The results illuminate the better performance than existing anomaly detection techniques in the big data environment.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1809
Author(s):  
Parushi Malhotra ◽  
Yashwant Singh ◽  
Pooja Anand ◽  
Deep Kumar Bangotra ◽  
Pradeep Kumar Singh ◽  
...  

The escalated growth of the Internet of Things (IoT) has started to reform and reshape our lives. The deployment of a large number of objects adhered to the internet has unlocked the vision of the smart world around us, thereby paving a road towards automation and humongous data generation and collection. This automation and continuous explosion of personal and professional information to the digital world provides a potent ground to the adversaries to perform numerous cyber-attacks, thus making security in IoT a sizeable concern. Hence, timely detection and prevention of such threats are pre-requisites to prevent serious consequences. The survey conducted provides a brief insight into the technology with prime attention towards the various attacks and anomalies and their detection based on the intelligent intrusion detection system (IDS). The comprehensive look-over presented in this paper provides an in-depth analysis and assessment of diverse machine learning and deep learning-based network intrusion detection system (NIDS). Additionally, a case study of healthcare in IoT is presented. The study depicts the architecture, security, and privacy issues and application of learning paradigms in this sector. The research assessment is finally concluded by listing the results derived from the literature. Additionally, the paper discusses numerous research challenges to allow further rectifications in the approaches to deal with unusual complications.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Abdelouahid Derhab ◽  
Arwa Aldweesh ◽  
Ahmed Z. Emam ◽  
Farrukh Aslam Khan

In the era of the Internet of Things (IoT), connected objects produce an enormous amount of data traffic that feed big data analytics, which could be used in discovering unseen patterns and identifying anomalous traffic. In this paper, we identify five key design principles that should be considered when developing a deep learning-based intrusion detection system (IDS) for the IoT. Based on these principles, we design and implement Temporal Convolution Neural Network (TCNN), a deep learning framework for intrusion detection systems in IoT, which combines Convolution Neural Network (CNN) with causal convolution. TCNN is combined with Synthetic Minority Oversampling Technique-Nominal Continuous (SMOTE-NC) to handle unbalanced dataset. It is also combined with efficient feature engineering techniques, which consist of feature space reduction and feature transformation. TCNN is evaluated on Bot-IoT dataset and compared with two common machine learning algorithms, i.e., Logistic Regression (LR) and Random Forest (RF), and two deep learning techniques, i.e., LSTM and CNN. Experimental results show that TCNN achieves a good trade-off between effectiveness and efficiency. It outperforms the state-of-the-art deep learning IDSs that are tested on Bot-IoT dataset and records an accuracy of 99.9986% for multiclass traffic detection, and shows a very close performance to CNN with respect to the training time.


2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988990 ◽  
Author(s):  
Sabeen Tahir ◽  
Sheikh Tahir Bakhsh ◽  
Rayan A Alsemmeari

Internet of things (IoT) is a complex and massive wireless network, where millions of devices are connected together. These devices gather different types of data from different systems that transform human daily lives by modernizing home appliances, business, medicine, traveling, research, and so on. Security is a critical challenge for a stable IoT network, for instance, routing attacks, especially sinkhole attack is a severe attack which has the capability to direct network data toward the intruder, and it can also disrupt and disconnect the devices from their network. The IoT needs multi-facet security solutions where network communication is protected with integrity, confidentiality, and authentication verification services. Therefore, the IoT network should be secured against intrusions and disruptions; the data exchanged throughout the network should be an encrypted form. In this article, an intrusion detection system for the prevention of an active sinkhole routing attack (PASR) in IoT is presented. The proposed PASR solves the problem of the sinkhole attack; for this purpose, the whole network is divided into the clusters of IoT. All the IoT devices are connected to their respective gateways. The gateway devices are equipped with an intrusion detection system. The intrusion detection system activates intrusion analyzer to detect anomalies in the context of ad hoc on-demand distance vector protocol. The base station is the main device that is responsible to receive data from all devices. Therefore, it detects and prevents sinkhole attacks; the base station keeps the record of all active devices and their possible links. The PASR is implemented and compared with the existing intrusion detection techniques ad hoc on-demand distance vector, and dual attack detection for black and gray hole attack. It was observed from the simulation results that the PASR outperforms in terms of data packet delivery, energy consumption, the detection rate of sinkhole attack, and routing overhead.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1038 ◽  
Author(s):  
Mahmoud Elsisi ◽  
Minh-Quang Tran ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

Worldwide, energy consumption and saving represent the main challenges for all sectors, most importantly in industrial and domestic sectors. The internet of things (IoT) is a new technology that establishes the core of Industry 4.0. The IoT enables the sharing of signals between devices and machines via the internet. Besides, the IoT system enables the utilization of artificial intelligence (AI) techniques to manage and control the signals between different machines based on intelligence decisions. The paper’s innovation is to introduce a deep learning and IoT based approach to control the operation of air conditioners in order to reduce energy consumption. To achieve such an ambitious target, we have proposed a deep learning-based people detection system utilizing the YOLOv3 algorithm to count the number of persons in a specific area. Accordingly, the operation of the air conditioners could be optimally managed in a smart building. Furthermore, the number of persons and the status of the air conditioners are published via the internet to the dashboard of the IoT platform. The proposed system enhances decision making about energy consumption. To affirm the efficacy and effectiveness of the proposed approach, intensive test scenarios are simulated in a specific smart building considering the existence of air conditioners. The simulation results emphasize that the proposed deep learning-based recognition algorithm can accurately detect the number of persons in the specified area, thanks to its ability to model highly non-linear relationships in data. The detection status can also be successfully published on the dashboard of the IoT platform. Another vital application of the proposed promising approach is in the remote management of diverse controllable devices.


Author(s):  
baraa I. Farhan ◽  
Ammar D.Jasim

The use of deep learning in various models is a powerful tool in detecting IoT attacks, identifying new types of intrusion to access a better secure network. Need to developing an intrusion detection system to detect and classify attacks in appropriate time and automated manner increases especially due to the use of IoT and the nature of its data that causes increasing in attacks. Malicious attacks are continuously changing, that cause new attacks. In this paper we present a survey about the detection of anomalies, thus intrusion detection by distinguishing between normal behavior and malicious behavior while analyzing network traffic to discover new attacks. This paper surveys previous researches by evaluating their performance through two categories of new datasets of real traffic are (CSE-CIC-IDS2018 dataset, Bot-IoT dataset). To evaluate the performance we show accuracy measurement for detect intrusion in different systems.


Sign in / Sign up

Export Citation Format

Share Document