scholarly journals Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

2016 ◽  
Vol 14 (2) ◽  
pp. e0304 ◽  
Author(s):  
Diego N. Chavarría ◽  
Romina A. Verdenelli ◽  
Emiliano J. Muñoz ◽  
Cinthia Conforto ◽  
Silvina B. Restovich ◽  
...  

Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which were sown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 209
Author(s):  
Lili Martinez ◽  
Pushpa Soti ◽  
Jasleen Kaur ◽  
Alexis Racelis ◽  
Rupesh R. Kariyat

Manipulating cover crops as an integrated pest management strategy has recently gained popularity in both traditional and organic agroecosystems. However, little information is available for producers to make informed decisions about cover crop selection, management, and their potential use as a pest management tool. To address this, we conducted a two-year, four-season field experiment on the potential of various cover crops during the summer seasons of both years, followed by monocultures of cash crops during winters. We hypothesized that the cover crop treatments would attract beneficial insects and repel damaging herbivores in a species-specific manner, and the insect community dynamics would be bridged to the cash crops in the subsequent season. In addition, we hypothesized that cash crops would suffer lower herbivory damage following specific cover crop treatments. Our design comprised of three cover crops. Our results indicate that cover crops support beneficial insects during the early summer season, while the time of growing season doesnot affect herbivore abundance. Crop-specific effects were found for herbivore abundance with possible cascading effects on insect community as well as damage levels on the subsequent cash crop, but without any impact on the growth traits of the cash crop. Together, our data suggest that cover crops, when carefully selected, can be an integral part of a pest management strategy for sustainable agriculture.


2016 ◽  
Vol 32 (5) ◽  
pp. 389-402 ◽  
Author(s):  
Sean C. McKenzie ◽  
Hayes B. Goosey ◽  
Kevin M. O'Neill ◽  
Fabian D. Menalled

AbstractCover crops are suites of non-marketable plants grown to improve soil tilth and reduce erosion. Despite these agronomic benefits, the use of cover crops is often limited because they do not provide a direct source of revenue for producers. Integrating livestock to graze cover crops could provide both an expeditious method for cover crop termination and an alternative source of revenue. However, there has been little research on the agronomic impacts of grazing for cover crop termination, especially in horticultural market-gardens. We conducted a 3-year study comparing the effects of sheep grazing to terminate a four species cover crop (buckwheat, sweetclover, peas and beets) with those of mowing on soil quality indicators, cover crop termination efficacy, and subsequent cash-crop yields. In addition, we tested the nutritional quality of the cover crop as forage. Compared with mowing, sheep grazing did not affect soil chemistry, temperature or moisture. Our study demonstrates that sheep grazing removed more cover crop biomass than mowing at termination. The assessment of nutritional indices suggests that the four-species cover crop mixture could provide high-quality forage with a potential value of US$144.00–481.80 ha−1of direct revenue as a grazing lease. Cash-crop yields did not differ between previously grazed and previously mowed plots in the subsequent growing season. We conclude that integrating sheep grazing into market vegetable garden operations could make cover crops more economically viable without having adverse effects on subsequent cash crops.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2199
Author(s):  
Kelly Ulcuango ◽  
Mariela Navas ◽  
Nelly Centurión ◽  
Miguel Á. Ibañez ◽  
Chiquinquirá Hontoria ◽  
...  

Cover crops (CC) provide important ecosystem services that are demanded to achieve more sustainable agrosystems. However, the legacy effects of CC on the microbial community structure and its interactions with the subsequent cash crops (CaC) are still poorly understood, especially when CC mixtures are involved. In this work, five CC (3 monocultures and 2 mixtures) were selected in an experiment under semi-controlled conditions to investigate if CC monocultures and mixtures differed in their effects on soil and crop variables and if the identity of the subsequent crop modulates these effects. The two most consumed crops worldwide, wheat and maize, were sown separately after CC. The legacy effects of CC on the studied microbial variables largely depended on the interaction with the CaC. The vetch and the barley-vetch mixture stood out by providing the microbial conditions that enhanced the absorption of macro- and micronutrients, to finally seek the highest wheat biomass (>80% more than the control). In maize, the effects of CC on soil microbiota were more limited. The soil microbial responses for CC mixtures were complex and contrasting. In wheat, the barley-vetch mixture behaved like barley monoculture, whereas in maize, this mixture behaved like vetch monoculture. In both CaC, the barley-melilotus mixture differed completely from its monocultures, mainly through changes in archaea, Glomeromycota, and F:B ratio. Therefore, it is necessary to deepen the knowledge on the CC-CaC-microbial interactions to select the CC that most enhance the sustainability and yield of each agrosystem.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2018 ◽  
Vol 47 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Emerta Aragie

By developing a model that describes the Kenyan coffee value chain, this study evaluates opportunities emanating from four scenarios representing productivity gains in the various value chain stages of the coffee sector and additional three scenarios reflecting shifts in market situations. Results show that productivity-enhancing policies have stronger effects on coffee output and export performance if they target the milling stage of the value chain. Export subsidy and favourable external marketing conditions also have stronger effects, distributed comparably across the various value chain stages. We, however, found that these gains in the coffee sector come at the expense of other cash crops such as cotton, tea, sugar and tobacco. The approach followed in this study is relevant as this trade-off between coffee and the other cash crop sectors may not be visibly shown using standard value chain approaches.


Oecologia ◽  
2017 ◽  
Vol 183 (4) ◽  
pp. 1155-1165 ◽  
Author(s):  
Scott J. Meiners ◽  
Kelsey K. Phipps ◽  
Thomas H. Pendergast ◽  
Thomas Canam ◽  
Walter P. Carson

Sign in / Sign up

Export Citation Format

Share Document