scholarly journals Improving yield and water use efficiency of apple trees through intercrop-mulch of crown vetch (Coronilla varia L.) combined with different fertilizer treatments in the Loess Plateau

2016 ◽  
Vol 14 (4) ◽  
pp. e1207 ◽  
Author(s):  
Wei Zheng ◽  
Yonggang Li ◽  
Qingli Gong ◽  
Haoqing Zhang ◽  
Zhiyuan Zhao ◽  
...  

Improving water use efficiency (WUE) and soil fertility is relevant for apple production in drylands. The effects of intercrop-mulch (IM) of crown vetch (Coronilla varia L.) combined with different fertilizer treatments on WUE of apple trees and soil fertility of apple orchards were assessed over three years (2011, 2013 and 2014). A split-plot design was adopted, in which the main treatments were IM and no intercrop-mulch (NIM). Five sub-treatments were established: no fertilization (CK); nitrogen and phosphorus fertilizer (NP); manure (M); N, P and potassium fertilizer (NPK); and NPK fertilizer combined with manure (NPKM). Due to mowing and mulching each month during July–September, the evapotranspiration for IM was 17.3% lower than that of NIM in the dry year of 2013. Additionally, the soil water storage of NPKM treatment was higher than that of CK during the experimental period. Thus, single fruit weight and fruit number per tree increased with IM and NPKM application. Moreover, applying NPKM with IM resulted in the highest yield (on average of three years), which was 73.25% and 130.51% greater than that of CK in IM and NIM, respectively. The WUE of NPKM combined with IM was also the highest in 2013 and 2014 (47.69 and 56.95% greater than applying IM alone). In addition, due to application of IM combined with NPKM, soil organic matter was increased by 25.8% compared with that of CK (in NIM). Additionally, application of IM combined with NPKM obtained more economic net return, compared to other combinations. Therefore, applying NPKM with IM is recommended for improving apple production in this rain-fed agricultural area.

2021 ◽  
Vol 243 ◽  
pp. 106415
Author(s):  
Linlin Wang ◽  
Junhong Xie ◽  
Zhuzhu Luo ◽  
Yining Niu ◽  
Jeffrey A. Coulter ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1624 ◽  
Author(s):  
Lijian Zheng ◽  
Juanjuan Ma ◽  
Xihuan Sun ◽  
Xianghong Guo ◽  
Qiyun Cheng ◽  
...  

The future production of irrigated fruit orchards in the Loess Plateau of China is threatened by a shortage of freshwater. To improve water use efficiency under conditions where irrigation is limited, it is necessary to quantify the root water uptake (RWU) of apple trees. The RWU of apple trees was estimated under surface irrigation using water stable isotope technology and the Hydrus-1D model. Using the Romero-Saltos and IsoSource models, the stable isotopes of water in stems, different soil depths, and different precipitation were analyzed in a 5-year-old dwarfing apple orchard during two seasons 2016 and 2017. Hydrus-1D model was able to simulate the RWU of apple using the maximum coefficient of determination (0.9), providing a root mean square error of 0.019 cm3 cm−3 and a relative error of 2.25%. The results showed that the main depth of RWU ranged from 0–60 cm during the growth season, with the main contribution occurring in the 0–40 cm depth. These findings indicated that reducing the traditional surface irrigation depth will be important for improving the irrigation water use efficiency.


2020 ◽  
Author(s):  
Jay Jabro ◽  
Bart Stevens ◽  
bill Iversen ◽  
brett Allen ◽  
Upendra Sainju

<p>Better management practices have been used to increase soil water storage and reduce evaporation from the soil surface to optimize crop water use efficiency (WUE) in irrigated agriculture. A field study was conducted to evaluate the effect of  conventional tillage (CT), No-till (NT) and strip tillage (ST) practices on yield, water use (WU) and WUE of sugarbeet (Beta vulgaris L.) on a clay loam soil under over-head sprinkler irrigation system in the northern Great Plains. Tillage treatments were replicated five times in a randomized block design. Seasonal WU and WUE for sugarbeet root and sucrose yield were determined for the 2018 and 2019 growing seasons according to the water balance and WUE equations under three tillage practices. Results showed that no significant differences due to tillage treatment were found for crop WU, root yield, sucrose yield, and WUE for sugarbeet root and sucrose in 2018 and 2019 growing seasons. In 2019, the average value of WU across three tillage systems (616 mm) was significantly greater relative to 2018 (468 mm) due to atypical large rainfalls (218mm) occurred in September of 2019. Consequently, WUE values for both root and sucrose yield in 2019 under CT, NT, and ST were significantly greater than those in 2018. While NT and ST practices are promising alternative to CT for agricultural production in this region, further research is needed prior to making any recommendation.</p>


Author(s):  
C. E. N. Savala ◽  
A. N. Wiredu ◽  
J. O. Okoth ◽  
S. Kyei-Boahen

Abstract Soybean yield within the Southern Africa falls below its potential despite similar climatic conditions across some agroecologies, replicable agronomic management practices and introduced improved varieties. Understanding physiological processes and water-use efficiency (WUE) of soybean offer information on bridging this yield gap. A field study was conducted in 2017 and 2018 seasons in two agroecologies (Angonia and Ruace) in Mozambique to evaluate the effects of Bradyrhizobium diazoefficiens strain USDA110 formerly known as Bradyrhizobium japonicum inoculant, nitrogen and phosphorus on nodulation, physiology and yield of non-promiscuous (Safari) and promiscuous (TGx 1740-2F) soybean varieties. Data on transpiration, photosynthesis, leaf area index, radiation interception and WUE from the beginning of flowering to maturity were collected. Transpiration rate varied considerably with interaction between locations, growth stages, varieties and treatments. At podding, phosphorus-treated soybean at Angonia transpired less (6.3 mmol/m2/s) than check plants (6.6 mmol/m2/s). Photosynthesis rate and WUE were distinct with variety, growth stages and inputs within agroecologies. For instance, in Angonia 2018 season, phosphorus fertilized TGx 1740-2F photosynthesized more at flowering (25.3 μmol/m2/s) while the lowest was phosphorus-treated Safari at podding with 17.2 μmol/m2/s. At the same site in 2017, inoculated soybean photosynthesized more at 22.8 μmol/m2/s leading to better WUE of 3.6 that corresponded to 2894 kg/ha yield. Overall, soybean WUE was higher when inoculated than N-treated, while P application yielded better. Results from this study will complement breeders’ effort in developing phosphorus efficient varieties suited for a wide range of changing climatical conditions.


Sign in / Sign up

Export Citation Format

Share Document