scholarly journals Inoculant, nitrogen and phosphorus improves photosynthesis and water-use efficiency in soybean production

Author(s):  
C. E. N. Savala ◽  
A. N. Wiredu ◽  
J. O. Okoth ◽  
S. Kyei-Boahen

Abstract Soybean yield within the Southern Africa falls below its potential despite similar climatic conditions across some agroecologies, replicable agronomic management practices and introduced improved varieties. Understanding physiological processes and water-use efficiency (WUE) of soybean offer information on bridging this yield gap. A field study was conducted in 2017 and 2018 seasons in two agroecologies (Angonia and Ruace) in Mozambique to evaluate the effects of Bradyrhizobium diazoefficiens strain USDA110 formerly known as Bradyrhizobium japonicum inoculant, nitrogen and phosphorus on nodulation, physiology and yield of non-promiscuous (Safari) and promiscuous (TGx 1740-2F) soybean varieties. Data on transpiration, photosynthesis, leaf area index, radiation interception and WUE from the beginning of flowering to maturity were collected. Transpiration rate varied considerably with interaction between locations, growth stages, varieties and treatments. At podding, phosphorus-treated soybean at Angonia transpired less (6.3 mmol/m2/s) than check plants (6.6 mmol/m2/s). Photosynthesis rate and WUE were distinct with variety, growth stages and inputs within agroecologies. For instance, in Angonia 2018 season, phosphorus fertilized TGx 1740-2F photosynthesized more at flowering (25.3 μmol/m2/s) while the lowest was phosphorus-treated Safari at podding with 17.2 μmol/m2/s. At the same site in 2017, inoculated soybean photosynthesized more at 22.8 μmol/m2/s leading to better WUE of 3.6 that corresponded to 2894 kg/ha yield. Overall, soybean WUE was higher when inoculated than N-treated, while P application yielded better. Results from this study will complement breeders’ effort in developing phosphorus efficient varieties suited for a wide range of changing climatical conditions.

2013 ◽  
Vol 14 ◽  
pp. 65-77
Author(s):  
Dipendra Pokhrel ◽  
Kiran Baral ◽  
Bishnu R Ojha ◽  
Surya K Ghimirey ◽  
Madhav P Pandey

Wheat crop in developing world including Nepal is grown under rainfed condition and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was conducted at Greenhouse to screen the 60 different genotypes of wheat including Nepalese landraces, commercial cultivars CIMMYT derived advanced lines, NWRP derived advanced lines, and three international drought tolerant check cultivars. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, plant height, number of tillers and biomass production. The analysis revealed significant variance between environments and among the wheat genotypes for most of these traits. A wide range of variability was observed for water use, water use efficiency, days to anthesis, plant height, number of tillers and biomass yield in both moisture stressed and non stressed environments. Gautam showed superiority than Bhrikuti and Vijaya among Nepalese cultivar for drought adaptive physiological traits. Landrace NPGR 7504 showed high level of water use efficiency and other positive traits for drought adaptation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Janine M. Albaugh ◽  
Peter J. Dye ◽  
John S. King

TheEucalyptusgenus yields high rates of productivity and can be grown across a wide range of site types and climates for products such as pulp, fuelwood, or construction lumber. In addition, many eucalypts have the ability to coppice, making this genus an ideal candidate for use as a biofuel feedstock. However, the water use ofEucalyptusis a controversial issue, and the impacts of these fast-growing trees on water resources are well documented. Regardless, the demand for wood products and water continues to rise, providing a challenge to increase the productivity of forest plantations within water constraints. This is of particular relevance for water-limited countries such as South Africa which relies on exotic plantations to meet its timber needs. Research results from water use studies in South Africa are well documented and legislation restrictions limit further afforestation. This paper outlines techniques used to quantify the water use of eucalypt plantations and provides recommendations on where to focus future research efforts. Greater insights into the water use efficiency of clonal material are needed, as certain eucalypt clones show fast growth and low water use. To better understand water use efficiency, estimates should be combined with monitoring of stand canopy structure and measurements of physiological processes.


2017 ◽  
Vol 60 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Liwang Ma ◽  
Zhiming Qi ◽  
Yanjun Shen ◽  
Liang He ◽  
Shouhua Xu ◽  
...  

Abstract. Deficit irrigation has been shown to increase crop water use efficiency (WUE) under certain conditions, even though the yield is slightly reduced. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated with measured data from a large weighing lysimeter from 1998 to 2003 at the Yucheng Experimental Station in the North China Plain for daily evapotranspiration (ET), soil water storage (0-120 cm), leaf area index (LAI), aboveground biomass, and grain yield. The calibrated model was then used to explore crop responses to ET-based irrigation management using weather data from 1958 to 2015 and identify the most suitable ET-based irrigation schedules for the area. Irrigation amount was determined by constraining irrigation to a percentage of potential crop ET (40%, 60%, 80%, and 100% ETc) at the various growth stages of wheat [planting to before winter dormancy (P-D), green up to booting (G-B), booting to flowering (B-F), and flowering to maturity (F-M)] and of maize [planting to silking (P-S) and silking to maturity (S-M)], subject to seasonal water availability limits of 100/50, 200/100, 300/150, and 400/200 mm and no water limit for wheat/maize seasons, respectively. In general, wheat was more responsive to irrigation than maize, while greater influence of weather variation was simulated on maize than on wheat. For wheat with seasonal water limits, the highest average WUE was simulated with the highest targeted ETc levels at both the G-B and B-F stages and lower targeted ETc levels at the P-D and F-M stages. However, the highest average grain yield was simulated with the highest targeted ETc levels at all four growth stages for no water limit and the 400 mm water limit, or at both the G-B and B-F stages for the 300 and 200 mm water limits. For maize, lower targeted ETc levels after silking did not significantly affect maize production due to the high season rainfall, but irrigation of 60% ETc before silking was recommended. These results could be used as guidelines for precision irrigation along with real-time weather information. Keywords: Deficit irrigation, Evapotranspiration, Growth stage, RZWQM, Water use efficiency, Wheat and maize.


2018 ◽  
Author(s):  
Ying Ma ◽  
Praveen Kumar ◽  
Xianfang Song

Abstract. The partitioning of evapotranspiration (ET) into soil evaporation (E) and crop transpiration (T) is fundamental for accurately monitoring agro-hydrological processes, assessing crop productivity, and optimizing water management practices. In this study, the isotope tracing technique was used to partition ET and quantify the root water uptake sources of winter wheat during the 2014 and 2015 growing seasons in Beijing, China. The correlations between seasonal ET partitioning and the leaf area index (LAI), grain yield, and water use efficiency (WUE) were investigated. The fraction of T in ET (FT) between the greening and harvest seasons was 0.82 on average and did not vary significantly among the different irrigation and fertilization treatments (p > 0.05). However, the values of FT during the individual growth periods were remarkably distinct (ranging from 0.51 to 0.98) among the treatments. The seasonal variability in FT could be effectively explained via a power-law function of the LAI (FT = 0.61 LAI0.21, R2 = 0.66, p  0.05). The total T during the jointing–heading and heading–filling periods (Tjf) had significantly quadratic relationships with the crop yield and WUE (p 


2021 ◽  
Vol 12 ◽  
Author(s):  
Huailin Zhou ◽  
Guangsheng Zhou ◽  
Li Zhou ◽  
Xiaomin Lv ◽  
Yuhe Ji ◽  
...  

The maximizing of water use efficiency (WUE) and radiation use efficiency (RUE) is vital to improving crop production in dryland farming systems. However, the fundamental question as to the association of WUE with RUE and its underlying mechanism under limited-water availability remains contentious. Here, a two-year field trial for maize designed with five progressive soil drying regimes applied at two different growth stages (three-leaf stage and seven-leaf stage) was conducted during the 2013–2014 growing seasons. Both environmental variables and maize growth traits at the leaf and canopy levels were measured during the soil drying process. The results showed that leaf WUE increased with irrigation reduction at the early stage, while it decreased with irrigation reduction at the later stage. Leaf RUE thoroughly decreased with irrigation reduction during the progressive soil drying process. Aboveground biomass (AGB), leaf area index (LAI), a fraction of absorbed photosynthetically active radiation (fAPAR), and light extinction coefficient (k) of the maize canopy were significantly decreased by water deficits regardless of the growth stages when soil drying applied. The interrelationships between WUE and RUE were linear across the leaf and canopy scales under different soil drying patterns. Specifically, a positive linear relationship between WUE and RUE are unexpectedly found when soil drying was applied at the three-leaf stage, while it turned out to be negative when soil drying was applied at the seven-leaf stage. Moreover, the interaction between canopy WUE and RUE was more regulated by fAPAR than LAI under soil drying. Our findings suggest that more attention must be paid to fAPAR in evaluating the effect of drought on crops and may bring new insights into the interrelationships of water and radiation use processes in dryland agricultural ecosystems.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 889
Author(s):  
Cristina Chinchilla-Soto ◽  
Ana María Durán-Quesada ◽  
Mayela Monge-Muñoz ◽  
Marco V. Gutiérrez-Soto

 Coffee is one of the most commonly traded agricultural commodities globally. It is important for the livelihoods of over 25 million families worldwide, but it is also a crop sensitive to climate change, which has forced producers to implement management practices with effects on carbon balance and water use efficiency (WUE) that are not well understood due to data scarcity. From this perspective, we propose crop canopy coupling to the atmosphere (Ώ) as an index of resilience and stability and we undertook an integrated observational approach for the scaling-up of measurements along the soil–plant–atmosphere continuum at different stages of the coffee crop phenological cycle. Additionally, we develop this perspective under pronounced climatic seasonality and variability, in order to assess carbon balance, WUE, and agroecosystem resilience in a sun-grown coffee field. Further, we devised a field layout that facilitates the measurement of intrinsic, instantaneous, and actual water use efficiency and the assessment of whether coffee fields differ in canopy structure, complexity, and agronomic management and whether they are carbon sources or sinks. Partitioning soil and canopy energy balances and fluxes in a sun-grown coffee field using eco-physiological techniques at the leaf and whole plant levels (i.e., sap flow and gas exchange), as proposed here, will allow the scaling-up to whole fields in the future. Eddy covariance was used to assess real-time surface fluxes of carbon, gross primary productivity (GPP), and evapotranspiration, as well as components of the energy balance and WUE. The preliminary results support the approach used here and suggested that coffee fields are CO2 sinks throughout the year, especially during fruit development, and that the influence of seasonality drives the surface–atmosphere coupling, which is dominant prior to and during the first half of the rainy season. The estimated WUE showed consistency with independent studies in coffee crops and a marked seasonality driven by the features of the rainy season. A plan for the arborization of the coffee agroecosystem is suggested and the implications for WUE are described. Future comparison of sun- and shade-grown coffee fields and incorporation of other variables (i.e., crop coefficient-KC for different leaf area index (LAI) values) will allow us to better understand the factors controlling WUE in coffee agroecosystems.  


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Author(s):  
Recep Cakir

The article contains data obtained from evaluations related to irrigation water use efficiency (IWUE) and water use efficiency (WUE), for the main crops, irrigated at different stages of growth, on the basis of some findings obtained in the Research Institute in Kırklareli. Each of the experimental crops was sown and farmed following procedures applied by the farmers in the region, except of the irrigation applications which were based on the sensitivity of a certain crop to water shortage in the soil, during the specific growth stages. Similar procedures were applied and all the experimental treatments were irrigated at growth stages, as predicted in the research methodology, and water amounts required to fill the 0-90 cm soil depth to field capacity were implied. Evaluation data obtained from the field experiments with three major crops, grown on the non-coastal lands of Thrace Region showed, that the productivity of irrigation water, as well as water use efficiencies of all analysed crops, are growth stage controlled. The highest IWUE and WUE efficiencies of 0.87 and 0.92 kg da-1 m-3; and 1.08 kg da-1 m-3 and 0.81 kg da-1 m-3; were determined for wheat and sunflower crops, irrigated at booting and flowering stages, respectively. Each m3 of irrigation water, applied during the most sensitive fruit formation stage (Ff) of pumpkin crop, provided additionally 8.47 kg da-1 fruit yield, 8.09 fruit numbers and 0.28 kg da-1 seed yields, more than those of rainfed farming (R).


1991 ◽  
Vol 27 (4) ◽  
pp. 351-364 ◽  
Author(s):  
J. Amir ◽  
J. Krikun ◽  
D. Orion ◽  
J. Putter ◽  
S. Klitman

Sign in / Sign up

Export Citation Format

Share Document