scholarly journals Analysis and forecasting of fog over Bangalore airport

MAUSAM ◽  
2021 ◽  
Vol 49 (1) ◽  
pp. 135-142
Author(s):  
M. MOHAPATRA ◽  
A. TULASI DAS

The fog over Bangalore airport has been analysed. The different favourable conditions on the previous night of the fog day has been studied. Attempts have been made to forecast the fog using different techniques. The Composite method is a new objective method which provides a better technique both in terms of physical principles and statistics. The accuracy of different methods have been calculated for the purpose of comparison. The most important result of the analysis is that the frequency of duration and intensity of fog have gradually increased from the decade of 80s to the decade of 90s which may be due to the increase in pollution of air, other factors remaining unchanged.

Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Author(s):  
R. Beeuwkes ◽  
A. Saubermann ◽  
P. Echlin ◽  
S. Churchill

Fifteen years ago, Hall described clearly the advantages of the thin section approach to biological x-ray microanalysis, and described clearly the ratio method for quantitive analysis in such preparations. In this now classic paper, he also made it clear that the ideal method of sample preparation would involve only freezing and sectioning at low temperature. Subsequently, Hall and his coworkers, as well as others, have applied themselves to the task of direct x-ray microanalysis of frozen sections. To achieve this goal, different methodological approachs have been developed as different groups sought solutions to a common group of technical problems. This report describes some of these problems and indicates the specific approaches and procedures developed by our group in order to overcome them. We acknowledge that the techniques evolved by our group are quite different from earlier approaches to cryomicrotomy and sample handling, hence the title of our paper. However, such departures from tradition have been based upon our attempt to apply basic physical principles to the processes involved. We feel we have demonstrated that such a break with tradition has valuable consequences.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


Author(s):  
James F. Smith ◽  
Ralph E. Flexman ◽  
Robert C. Houston

2020 ◽  
pp. 69-73
Author(s):  
S.G. Birjukov ◽  
O.I. Kovalenko ◽  
A.A. Orlov

The approach to creating standard means for reproducing units of volumetric activity of radon and thoron and flux density of radon from the soil surface is described based on the physical principles of reproducing these units of quantities and using as technical means for reproducing bubblers with a radioactive solution of radium salt, reference capacities of known volume, emanation chambers for generation of a toron, a gamma spectrometer with a semiconductor detector from highly pure germanium and radon radiometers. Reproduction consists in the physical realization of units in accordance with their definition as applied to the formation of radon and thoron in the radioactive rows of radium and thorium. The proposed approach will allow to determine the structural, structural and other technical solutions of standard measuring instruments, as well as specific techniques and methods of working with them. The creation of standard tools and technologies for reproducing units of volumetric activity of radon and thoron and the density of radon flux from the soil surface will ensure the unity and reliability of measurements in the field of ionizing radiation, traceability of units and bringing the characteristics of national standards in line with world achievements.


2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


Sign in / Sign up

Export Citation Format

Share Document