scholarly journals Soybean cropping systems on sandy soil of the Caiuá Sandstone formation in Northwestern Paraná, Brasil

2020 ◽  
pp. 2061-2070
Author(s):  
Ivan Bordin, Nilson dos Santos Silva ◽  
Nilson dos Santos Silva ◽  
Tiago Roque Benetoli da Silva ◽  
Josiane Bürkner Santos ◽  
Luciano Grillo Gil ◽  
...  

Extensive cattle ranching had been the most common farming practice in northwestern Paraná State (Brazil), where soils originate from the Caiuá Sandstone. But this reality is changing with the growing cultivation of grain crops, especially soybeans. This study aimed to evaluate different soybean cropping systems in terms of yield components, plant dry matter, and soil chemical properties. The soil is classified as a dystrophic sandy Red Argisol, which derived from the Caiuá Sandstone, in northwestern Paraná State (Brazil). The experiment was carried out in the city of Umuarama (PR), Brazil, under a no-till system for three years. Treatments consisted of the following crop rotation systems: T1: congo grass/soybeans, congo grass/soybeans, congo grass/soybeans; T2: black oats + rye/soybeans, black oats + radish/grain sorghum, black oats + rye/soybeans; T3: triticale/corn, grain sorghum/soybeans, triticale/ soybeans; T4: crambe/grain sorghum, canola/corn, safflower/soybeans; T5: lupine/corn + congo grass, beans/corn, buckwheat/black oats/congo grass. The experiment was arranged in a randomized block design, with four replications and 300-m2 plots. The data were subjected to analysis of variance, and means were compared by the Tukey’s test at 5% significance. The highest grain yield was obtained when soybeans were sown after white oats harvesting. Plant dry matter increased in the system with lupine/corn + congo grass, beans/corn, buckwheat/white oats/soybeans. However, none of the systems had an effect on soil chemical properties during the three crop years.

2019 ◽  
Vol 4 (3) ◽  
pp. 145-154
Author(s):  
Vina Utami ◽  
Ilyas Ilyas ◽  
Munawar Khalil

Abstrak. Pemberian kompos dan mikoriza merupakan salah satu alternatif untuk meningkatkan pertumbuhan bibit kakao dan dapat memperbaiki sifat kimia tanah.  Penelitian ini menggunakan Rancangan Acak Kelompok (RAK) pola faktorial yang terdiri atas dua faktor ( kompos dan  jenis mikoriza) dengan pola 3 x 3 dan tiga kali ulangan. Hasil penelitian ini menunjukkan bahwa faktor tunggal kompos berpengaruh nyata terhadap N-total dan tinggi tanaman namun tidak nyata terhadap pH, C- organik, P- tersedia, Kdd, KTK, diameter batang dan luas daun. Perlakuan mikoriza secara tunggal  serta kombinasi antara kompos dan mikoriza tidak berpengaruh nyata terhadap sifat kimia tanah dan pertumbuhan tanaman. Perlakuan terbaik yaitu 30 g kompos dan 10 g jenis mikoriza Glomus sp + Giga spora. The Effect of  Compost and Mycorrhizal on Changes in  Soil Chemical Properties and Growth of Cocoa (Theobroma cacao L.)Abstract. Provision of compost and mycorrhizae is one alternative to increase the growth of cacao seedlings and can improve soil chemical properties. This study used a factorial Randomized Block Design (RBD) consisting of two factors (compost and mycorrhizal type) with a 3 x 3 pattern and three replications. The results of this study indicate that the single compost factor had a significant effect on total N and plant height but was not significant for pH, organic matter, P-available, Kdd, CEC, stem diameter and leaf area. Single mycorrhizal treatment and the combination of compost and mycorrhizae did not significantly affect soil chemistry and plant growth. The best treatments were 30 g of compost and 10 g of mycorrhizal Glomus sp + Giga spore


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Raphiou Maliki ◽  
Brice Sinsin ◽  
Anne Floquet ◽  
Denis Cornet ◽  
Eric Malezieux ◽  
...  

Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow ofAndropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation,Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.


2018 ◽  
Vol 39 (6) ◽  
pp. 2517
Author(s):  
Armindo Neivo Kichel ◽  
Luis Carlos Ferreira de Souza ◽  
Roberto Giolo de Almeida ◽  
José Alexandre Agiova da Costa

This study aimed to assess productivity and nutritional value of the tropical grasses Brachiaria brizantha cv. Piatã, Xaraés, and Marandu, Panicum maximum cv. Mombaça, and B. ruziziensis cv. Kennedy in the interseason of an integrated crop-livestock (ICL) system since alternatives are needed for forage production for animal grazing in Autumn and Winter. The experimental design was a randomized block design in a split-split plot scheme with four replications. The treatments of plots consisted of five grasses, subplots consisted of three cropping systems (monoculture, intercropping with corn and unsuppressed grass, and intercropped with corn and suppressed grass), and sub-subplots consisted of four cutting intervals of grasses (50, 90, 125, and 195 days after emergence - DAE). The experiment was carried out from February to September 2014. Dry matter (DM) productivity, obtained at 195 DAE for the three cropping systems (monoculture grass, unsuppressed and suppressed grass in intercropping), were 18.45, 7.15, and 3.05 t ha?1, respectively, and average crude protein contents of leaf blades of grasses decreased linearly between the cutting intervals of 50 to 195 DAE from 19.95 to 9.70%, respectively. Under integrated systems, the studied grasses showed better yields and nutritional quality when compared to traditional grazing systems. Panicum maximum cv. Mombaça and Brachiaria brizantha cv. Xaraés and Piatã had the highest leaf and crude protein yields when compared to Brachiaria ruziziensis cv. Kennedy and Brachiaria brizantha cv. Marandu. In terms of nutritional value, Brachiaria ruziziensis cv. Kennedy was superior to Mombaça and Xaraés grasses but had lower total dry matter yield. Finally, Xaraés, Piatã and Mombaça grasses are recommended choices ICL systems when fodder grass production is the goal.


2018 ◽  
Vol 17 (1) ◽  
pp. 15
Author(s):  
IRAN DIAS BORGES ◽  
ELAINE CRISTINA TEIXEIRA ◽  
LORENA MARTINS BRANDÃO ◽  
ANTÔNIO AUGUSTO NOGUEIRA FRANCO ◽  
MARCOS KOITI KONDO ◽  
...  

ABSTRACT - The present study aimed to determine the curves of macronutrients and dry matter accumulation in grain sorghum DKB 599, grown in a semiarid region. A field experiment was conducted on a sandy loam eutrophic red Latosol (Oxisol) in Janaúba, State of Minas Gerais (MG), Brazil, in a randomized block design with four replications. As statistical method, a nonlinear regression, sigmoidal function with three parameters was used. After drying, the plants were weighed and ground to determine N, P, K, Ca, Mg and S concentration. Grain sorghum plants accumulate nutrients in their shoots in the following order: N> K> Ca> P> Mg> S. The highest concentrations of K and N were observed in stems and grains, respectively. In the conditions of this experiment, the most favorable time to perform nitrogen and potassium topdressing fertilization is when the plants present seven fully expanded leaves or 24 days after the emergency (DAE). Keywords: fertilization, growth, nutrition, Sorghum bicolor. ABSORÇÃO DE MACRONUTRIENTES E ACÚMULO DE MATÉRIA SECA NO SORGO GRANÍFERO RESUMO - Este trabalho teve como objetivo determinar as curvas de acúmulo de matéria seca e macronutrientes no sorgo DKB 599 cultivado em região semiárida. O experimento foi conduzido em campo sobre um Latossolo Vermelho eutrófico, de textura franco-argilosa, no município de Janaúba-MG, Brasil, em delineamento experimental de blocos casualizados, com quatro repetições. Utilizou-se o modelo de regressão não linear, função sigmoidal com três parâmetros como método estatístico. Após secagem, cada parte da planta foi pesada e moída para, em seguida, determinarem-se os teores de N, P, K, Ca, Mg e S. As plantas de sorgo granífero acumulam nutrientes em sua parte aérea na seguinte ordem: N > K > Ca > P > Mg > S. As maiores concentrações de K e N foram observadas, respectivamente, nos caules e nos grãos. Nas condições de condução do experimento, a época mais propícia para realizar a adubação nitrogenada e potássica em cobertura é quando as plantas apresentam sete folhas totalmente expandidas ou 24 dias após a emergência (DAE). Palavras-chave: fertilização, crescimento, nutrição, Sorghum bicolor.


2016 ◽  
Vol 21 (1) ◽  
pp. 9
Author(s):  
. Dermiyati ◽  
Setyo Dwi Utomo ◽  
Kuswanta Futas Hidayat ◽  
Jamalam Lumbanraja ◽  
Sugeng Triyono ◽  
...  

This study aimed to examine Organonitrofos Plus fertilizer (OP) on sweet corn (Zea mays Saccharata L.) and its effect on changes in soil chemical properties of Ultisols. Organonitrofos Plus fertilizer is an enhancement of Organonitrofos fertilizer enriched with microbes at the beginning of the manufacturing process. Research was conducted in the greenhouse of Integrated Agricultural Laboratory of Lampung University. Treatment applied was a factorial of 4 × 2 × 3 with three replications in a randomized block design. The first factor was the dose of OP fertilizer (0, 10, 20, 30 Mg ha-1), the second factor was the dose of inorganic fertilizers (without inorganic fertilizers, and with inorganic fertilizers, namely Urea 0.44, 0.28 SP-36 and KCl 0.16 Mg ha-1), and the third factor was the dose of biochar (0, 10, 20 Mg ha-1). By a single OP fertilizers, inorganic fertilizers, and the interaction between the OP and the inorganic fertilizers increased the weight of dry stover, cob length, cob diameter, cob with husk and cob without husk of corn. OP fertilizers which are applied in Ultisols can improve soil fertility and increase corn production so that OP fertilizer can lessen the use of inorganic fertilizer and can be used as a substitute for inorganic fertilizer. RAE values were highest in treatment of O4K2B2 (30 Mg OP ha-1, with inorganic fertilizer, 10 Mg biochar ha-1) that was equal to 181%, followed by O2K2B3 (10 Mg OP ha-1, with inorganic fertilizer, 20 Mg biochar ha-1 ) with the difference in RAE value of 0.5%. [How to Cite: Dermiyati, SD  Utomo,  KF Hidayat, J Lumbanraja, S Triyono, H Ismono, NE  Ratna, NT Putri dan R Taisa. 2016. Pengujian Pupuk Organonitrofos Plus pada Jagung Manis (Zea mays Saccharata. L) dan Perubahan Sifat Kimia Tanah Ultisols. J Trop Soils 21: 9-17 Doi: 10. 10.5400/jts.2016.21.1.9]


2020 ◽  
Vol 8 (1) ◽  
pp. 123-133
Author(s):  
Putri Alfira Zuraida ◽  
Yulia Nuraini

Fertile agricultural land encourages people to carry out agricultural cultivation activities. But in general, it has decreased soil fertility because its managed intensively without recycling of organic matter and has an impact on decreasing soil fertility chemically such as soil organic carbon and pH then leads to low productivity. Soybean is an agricultural product that necessary to develop because the demand for soybean consumption in East Java Province has always increased. However, Indonesia has not been able to fulfil this demand. One of the technology innovations that can be applied to improve soil fertility that has low organic matter and to increasing soybean production by providing input of quality organic fertilizer in the form of compost (Tithonia and Cow Dung). So this research is important to determine the effect of application cow dung compost and tithonia on soil chemical properties, the growth of soybean crops, and the correlations between soil chemical properties and soybean growth. This study used a randomized block design with 6 treatments and 3 replications. The result showed that the application of tithonia and cow dung compost shows a significant effect on soil chemical properties, plant height, and the number of leaves, but didn’t show a significant effect on the number of branches in every observation. Based on the correlation analysis, the results show a positive correlation between soil chemical properties and soybean growth.


Author(s):  
Syahminar Syahminar ◽  
Erwin Masrul Harahap ◽  
Abdul Rauf ◽  
Ali Jamil

The aim of this study was to obtain the best combination of types and doses of ameliorant materials: dolomite, rock phosphate, and mineral soil to improve the chemical properties of soil which was incubated for one year in peat media in polybag. The research was conducted in May 2015 - April 2016 in the experimental garden in the village of Sijambi, Tanjungbalai, North Sumatra. Elevation 3 m above sea level, with the C2 (Oldeman) climate type. The experiment was compiled using a Randomized Block Design, with 3 treatments of ameliorant material. The three ameliorant materials were tested for 3 doses. The addition of dolomite treatment: A1=0.45 kg polybag-1; A2=0.90 kg polybag-1; A3=1.35 kg polybag-1. The addition of rock phosphate treatment: A4=0.45 kg polybag-1; A5=0.90 kg polybag-1; A6=1.35 kg of polybag-1. The addition of mineral soil treatment: A7=0.45 kg polybag-1; A8=0.90 kg polybag-1; and A9=1.35 kg polybag-1.The results shown that the highest dose of dolomite (1.35 kg polybag-1) improved soil chemical properties, including soil pH and alkali cations (K, Ca and Mg) on incubated peat soil. Addition of rock phosphate with the highest dose of 1.35 kg polybag-1 (A6) increases available phosphorus and soil CEC. Addition of mineral soil dose of 0.90 kg polybag-1 (A8) increases soil CEC. In the analysis of total soil nitrogen, the highest increase was obtained by adding dolomite dose of 0.45 kg.polibag-1 (A1).


2021 ◽  
Vol 8 (2) ◽  
pp. 385-394
Author(s):  
Diva Ariella Herhandini ◽  
Retno Suntari ◽  
Ania Citraresmini

Rice husk biochar and compost application are expected to improve soil chemical properties such as pH, organic carbon, and available P in Ultisol, which in turn improves crop growth and P uptake by plants. The purpose of this research was to analyze the effect of the combination of rice husk biochar and compost on the soil chemical properties (pH, organic carbon, and available P), maize growth, and P uptake by maize in an Ultisol. The research used a Randomized Block Design with six treatments (P0: control; P1: 4 t biochar ha-1; P2: 30 t compost ha-1; P3: 4 t biochar ha-1 and 30 t compost ha-1; P4: 8 t biochar ha-1 and 30 t compost ha-1; P5: 4 t biochar ha-1 and 60 t compost ha-1) and four replications. The result showed that the combination of 8 t rice husk biochar ha-1 and 30 t compost ha-1 showed a significant effect on increasing pH, organic carbon, and available P in an Ultisol, increasing the height of maize crops at 4 and 6 WAP (weeks after planting). However, it had no effect on the number of leaves and showed an effect on the increase in P uptake of maize crop.


Author(s):  
Marcelo E. Bócoli ◽  
José R. Mantovani ◽  
José M. Miranda ◽  
Douglas J. Marques ◽  
Adriano B. da Silva

ABSTRACT Organic materials subjected to a process of anaerobic digestion in a digester produce biofertilizer that can be used in agriculture as nutrient source. The objective of this study was to evaluate the effect of pig slurry biofertilizer on soil chemical properties and on corn yield and nutrient concentrations in leaves and kernels. The experiment was conducted in the field from November 2012 to April 2013, and was arranged in a randomized block design with seven treatments and four replicates. The treatments consisted of doses of pig slurry biofertilizer (0; 40; 80; 120; 160; 200 and 240 m3 ha-1), applied to the soil surface in a single application, at stage V2 of corn plants. Thirty-three days after biofertilization, soil samples were collected in each plot. Corn was harvested 129 days after sowing. Doses up to 240 m3 ha-1 of pig slurry biofertilizer applied to soil with good fertility did not influence soil chemical properties and corn yield. The use of pig slurry biofertilizer had no detectable effect on nutrient concentrations in corn leaves and kernels.


Sign in / Sign up

Export Citation Format

Share Document