scholarly journals Soy bean seed-coat, potential renewable raw-material for alcohol production

1984 ◽  
Vol 4 (15) ◽  
pp. 491
Author(s):  
Kailash Chandra Srivastava
2018 ◽  
Vol 41 (5) ◽  
pp. 1027-1034 ◽  
Author(s):  
Lijuan Zhu ◽  
Feng Jin ◽  
Minghui Fan ◽  
Junxu Liu ◽  
Rui Chang ◽  
...  

PROTOPLASMA ◽  
1990 ◽  
Vol 154 (1) ◽  
pp. 45-52 ◽  
Author(s):  
E. C. Yeung ◽  
M. J. Cavey

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 271
Author(s):  
Salman Khan Promon ◽  
Wasif Kamal ◽  
Shafkat Shamim Rahman ◽  
M. Mahboob Hossain ◽  
Naiyyum Choudhury

Background: The requirement of an alternative clean energy source is increasing with the elevating energy demand of modern age. Bioethanol is considered as an excellent candidate to satiate this demand.Methods:Yeast isolates were used for the production of bioethanol using cellulosic vegetable wastes as substrate. Efficient bioconversion of lignocellulosic biomass into ethanol was achieved by the action of cellulolytic bacteria (Bacillus subtilis).  After proper isolation, identification and characterization of stress tolerances (thermo-, ethanol-, pH-, osmo- & sugar tolerance), optimization of physiochemical parameters for ethanol production by the yeast isolates was assessed. Very inexpensive and easily available raw materials (vegetable peels) were used as fermentation media. Fermentation was optimized with respect to temperature, reducing sugar concentration and pH.Results:It was observed that temperatures of 30°C and pH 6.0 were optimum for fermentation with a maximum yield of ethanol. The results indicated an overall increase in yields upon the pretreatment ofBacillus subtilis; maximum ethanol percentages for isolate SC1 obtained after 48-hour incubation under pretreated substrate was 14.17% in contrast to untreated media which yielded 6.21% after the same period. Isolate with the highest ethanol production capability was identified as members of the ethanol-producingSaccharomycesspecies after stress tolerance studies and biochemical characterization using Analytical Profile Index (API) ® 20C AUX and nitrate broth test. Introduction ofBacillus subtilisincreased the alcohol production rate from the fermentation of cellulosic materials.Conclusions:The study suggested that the kitchen waste can serve as an excellent raw material in ethanol fermentation.


2013 ◽  
pp. 279-287 ◽  
Author(s):  
Radojka Razmovski ◽  
Vesna Vucurovic ◽  
Uros Miljic ◽  
Vladimir Puskas

Jerusalem artichoke (JA) is a low-requirement crop, which does not interfere with food chain, and is a promising carbon source for industrial fermentation. Microbial conversion of such a renewable raw material to useful products, such as ethanol, is an important objective in industrial biotechnology. In this study, ethanol was efficiently produced from the hydrolyzates of JA obtained at different pH values (pH 2.5, pH 3.0 and pH 3.5), temperature (120, 130, 132 and 134?C) and hold time (30 and 60 min) by Saccharomyces cerevisiae. The efficient degradation of JA by HCl under certain experimental conditions was confirmed by thin-layer chromatography. Ethanol concentration of 7.52% (w/w), which corresponds to 93.89 % of the theoretical yield is achieved by ethanol fermentation of JA hydrolyzate obtained at pH 2.5.


Author(s):  
Martins Andzs ◽  
Voldemars Skrupskis

Obtaining of a new ecological heat insulation material from always renewable raw material in nature, wood and hemp, derived from wood and hemp fibre remains left from the production process. The study was carried out to find hemp wood parts (shives), fiber, and material first possible compositions together with wood fibres, to produce heat insulation materials. The use of the heat insulation material would be meant for dwelling and recreation houses. In the present research the main characteristics of these materials are determined: moisture content, density, water absorption, as well as the coefficient of heat transmission.


2014 ◽  
Vol 50 (3) ◽  
pp. 591-597
Author(s):  
Xiping Li ◽  
Ping Gao ◽  
Chengliang Zhang ◽  
Tao Wu ◽  
Yanjiao Xu ◽  
...  

Mung bean seed coat (MBSC) is a healthcare product in Asian countries. The aim of this study was to investigate the effect of an MBSC ethanol extract on the bioavailability of cyclosporine A (CsA) in rats. Rats were orally dosed with CsA alone or in combination with MBSC ethanol extracts (500 mg/kg, p.o.). The blood levels of CsA were assayed by liquid chromatography with an electrospray ionization source and tandem mass spectrometry (LC-MS/MS). The everted rat intestinal sac technique was used to determine the influence of MBSC on the absorption of CsA. The results reveal that combined CsA intake with MBSC decreased the Cmax, AUC0-t, t1/2z and MRT0-t values of CsA by 24.96%, 47.28%, 34.73% and 23.58%, respectively (P<0.05), and significantly raised the CL/F by 51.97% (P<0.01). The in vitro results demonstrated that significantly less CsA was absorbed (P<0.05). The overall results indicate that after being concomitantly ingested, MBSC reduced the bioavailability of CsA, at least partially, in the absorption phase.


Author(s):  
Andi Budirohmi

Polyuretanes are widely used as elastomers, coatings, adhesivesand binders,interior and exterior cars, furniture,shoe soles, carpets, rigit and flexible foams, membrane materials as well as constuction materials .The production of polyurethanes is largely derived  from  polyols derived from petroleum . Howover, petroleum  is a non- renewable raw material . Thus it is necessary to look alternative feedstock  for the manufacture of polyol  as a polyurethane raw material. Synnthesis polyurethane by polymerization process  using  polyol volume based on polyol  oleat acid  polypropylenglycol ( PPG ) in order to know  whether fatty acid can be used  as raw materials  of polyurethane manufacture.From the result of the study. Based on Fourier Transform Infra  Red ( FTIR), showed,that the product  produced is polyol with obtained hydroxyl  group ( OH group )with hydroxylnumber is 129,81 mg KOH / g and 157,60 mg KOH / g sample of 70 


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3575-3579
Author(s):  
Francine M. Nunes ◽  
Eduarda M. Rangel ◽  
Fernando M. Machado ◽  
Rubens Camaratta ◽  
Letícia P. Cardoso ◽  
...  

AbstractThe food processing industry highlights the daily generation of large amounts of eggshell solid residue. In this way, this residue becomes a non renewable raw material to be reused as an additive in red ceramics, in order to reduce the volume of disposal to the environment and improve the physical properties of the product. The objective of this work was to evaluate the forming moisture, linear shrinkage of drying and shrinkage of drying burning of ceramic test pieces (CS’s) with formulations with 2% and 3% of white eggshell residue (ER) incorporated in clay. The clay and ER were collected in the city of Pelotas-RS. The ER sample was analyzed by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). After pressing, natural and artificial drying was carried out and the CS’s were burned. These were evaluated through normative parameters C-020/95, C-021/95 and C-026/95. The values obtained for the forming moisture were between 5.82 and 8.78%, for the linear shrinkage of drying between 0.10 and 0.43% and, for the linear contraction burning between -0.29 and 0.08%. The results showed that the addition of ER to the ceramic mass helped in the reduction of the forming moisture and the linear shrinkage of the ceramic test pieces.


Sign in / Sign up

Export Citation Format

Share Document