Electrical Parameters of Si n-Mosfet THz-Detector: Matching with External Amplifier

2010 ◽  
Vol 5 (4) ◽  
pp. 59-62
Author(s):  
Fedor F. Sizov ◽  
Oleksandr G. Golenkov ◽  
Vladimir P. Reva ◽  
Dmitriy B. But

The influence of the external load resistance on voltage and current sensitivities of Si n-MOSFET THz detectors at radiation frequency ν=142 GHz is investigated. The noise level in the frequency band, which is needed for real-time imaging is specified. Investigated were transistors with the gate widths and lengths within 1×1 µm 2 and 20×20 µm 2 . It is shown that internal resistance and external load resistance form the divider, the parameters of which are important for matching with read-out devices.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1505
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, a semi-analytic approach to optimizing the external load resistance of a bi-stable electromagnetic energy harvester is presented based on the harmonic balance method. The harmonic balance analyses for the primary harmonic (period-1T) and two subharmonic (period-3T and 5T) interwell motions of the energy harvester are performed with the Fourier series solutions of the individual motions determined by spectral analyses. For each motion, an optimization problem for maximizing the output power of the energy harvester is formulated based on the harmonic balance solutions and then solved to estimate the optimal external load resistance. The results of a parametric study show that the optimal load resistance significantly depends on the inductive reactance and internal resistance of a solenoid coil––the higher the oscillation frequency of an interwell motion (or the larger the inductance of the coil) is, the larger the optimal load resistance. In particular, when the frequency of the ambient vibration source is relatively high, the non-linear dynamic characteristics of an interwell motion should be considered in the optimization process of the electromagnetic energy harvester. Compared with conventional resistance-matching techniques, the proposed semi-analytic approach could provide a more accurate estimation of the external load resistance.


2015 ◽  
Vol 137 (4) ◽  
pp. 1732-1743 ◽  
Author(s):  
Yub Je ◽  
Haksue Lee ◽  
Kyounghun Been ◽  
Wonkyu Moon

2021 ◽  
Vol 309 ◽  
pp. 01121
Author(s):  
G Sandhya Rani ◽  
U Vijaya Laxmi ◽  
P Srividya Devi ◽  
M Naga Sandhya Rani

The objective of this paper is to monitor the electrical parameters like voltage, current, etc., remotely and display all the obtained real time values for a substation isolate. This paper is furnished to assure the load and electrical system equipment by the activation of relay, whenever the acquired parameters exceed the predefined values. Generally, this Proposed system design makes use of microcontroller, but the prototype of this circuit modelled in Proteus and can be executed by using ATmega 168 microcontroller. When supply is given to the designed hardware, all the sensors start sensing their respective parameters i. e., voltage, current, temperature etc., and modernize all the values on the display. Comparison between the problem-solving time values and the preordained values is continuously carried out by the microcontroller, if any of these values go beyond the pre-defined values, it sends fault alert to the relay, updates it on the screen and sends the same as an SMS through GSM for the rectification.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jailos Mrisho Nzumile ◽  

Autoregressive (AR2) technique has always been used to estimate frequency of the output signal from Large ring laser. However, the acquisition rate is not at near real time which is the requirement and noise level still challenge the process resulting to errors in the final estimation. A research was done to compare the Autoregressive (AR2) with the counterparts such as Pisarenko, Quinn, Hilbert and Phase looking for a better technique that will estimate the frequency at near real time to minimize errors. Secondary data from G and C – II ring laser were used during the comparison between the techniques and Autoregressive (AR2). Results shows that, the output characteristics from the counterpart does not depict the oscillations of the Earth rotation as expected contrast to that of Autoregressive (AR2) which does. Moreover, there were much deviation from the expected true value for the techniques contrast to that of AR2 which is very minimum. On the other hand, when the C – II data were used, it was observed that both techniques resemble on their output characteristics though AR2 was still better in the acquisition rate expect for Hilbert transform which does not resemble with others. Following the scope of this paper, Autoregressive (AR2) technique still emerge as a favorite frequency estimation technique contrast to the four counterparts due to its robustness, high acquisition rate as well as low noise level.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 56811-56822 ◽  
Author(s):  
Xiaojun Tan ◽  
Yuqing Tan ◽  
Di Zhan ◽  
Ze Yu ◽  
Yuqian Fan ◽  
...  

2019 ◽  
Vol 16 (3) ◽  
pp. 368-376
Author(s):  
Dipak Sudam Patil ◽  
Rachayya R. Arakerimath ◽  
Pramod V. Walke

Purpose This paper aims to present an experimental investigation and optimization of a low-temperature thermoelectric module to examine the influence of the main operating conditions. Design/methodology/approach In this work, a comparison was made by varying the various operating parameters such as heat source temperature, the flow rate of the cold fluid and the external load resistance. A Taguchi method was applied to optimize the parameters of the system. Three factors, including the external load resistance, mass flow rate of water (at the heat sink side) and heater temperature (at the heat source side) along with different levels were taken into account. Analysis of variance was used to determine the significance and percentage contribution of each parameter. Findings The experimental results show that the maximum power output 8.22W and the maximum conversion efficiency 1.11 per cent were obtained at the heater temperature of 240°C, the cold fluid mass flow rate of 0.017 kg/s, module temperature difference of 45°C and the load resistance of 5 O. It was observed that the optimum parameter levels for maximum power output determined as 5 O external load resistance, 0.17 kg/s mass flow rate of water and 240°C heater temperature (A1B3C3). It reflects that these parameters influence on the optimum conditions. The heater temperature is the most significant parameter on the power output of the thermoelectric module. Originality/value It is clear from the confirmation test that experimental values and the predicted values are in good agreement.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4350
Author(s):  
Rui Lu ◽  
Jiwu Lu ◽  
Ping Liu ◽  
Min He ◽  
Jiangwei Liu

The VRLA (valve-regulated lead-acid) battery is an important part of a direct current (DC) power system. In order to resolve issues of large volume, complicated wiring, and single function for a battery monitoring system at present, we propose to build a novel intelligent-health-monitoring system. The system is based on the ZigBee wireless communication module for collecting voltage, temperature, internal resistance, and battery current in real-time. A general packet radio service (GPRS) network is employed for interacting data with the cloud-monitoring platform. The system can predict the remaining capacity of the battery combined with the software algorithm for realizing real-time monitoring of the battery’s health status and fault-warning, providing a basis for ensuring the safe and reliable operation of the battery. In addition, the system effectively integrates most of the circuits of the battery status collector onto one chip, which greatly reduces the size and the power consumption of the collector and also provides a possibility for embedding each VRLA battery with a chip that can monitor the health status during the whole life. The test results indicate that the system has the characteristics of real-time monitoring, high precision, small-volume, and comprehensive functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Zhifei Wu ◽  
Guangzhao Xu

This paper proposes a hydraulic energy-harvesting shock absorber prototype, which realizes energy harvesting of the vibration energy dissipated by the automobile suspension system. The structural design of the proposed shock absorber ensures that the unidirectional flow of oil drives the hydraulic motor to generate electricity while obtaining an asymmetrical extension/compression damping force. A mathematical model of the energy-harvesting shock absorber is established, and the simulation results indicate that the damping force can be controlled by varying the load resistance of the feed module, thus adjusting the required damping force ratio of the compression and recovery strokes. By adjusting the external load, the target indicator performance of the shock absorber is achieved while obtaining the required energy recovery power. A series of experiments are conducted on the prototype to verify the validity of the damping characteristics and the energy recovery efficiency as well as to analyze the effect of external load and excitation speed on these characteristics.


2020 ◽  
Vol 34 (11) ◽  
pp. 2050102
Author(s):  
Amirhosein Mosavi ◽  
Beszedes Bertalan ◽  
Felde Imre ◽  
Laszlo Nadai ◽  
Nima E. Gorji

A precise characterization of thin-film solar cells is of huge importance for obtaining high open-circuit voltage and low recombination rates from the interfaces or within the bulk of the main materials. Among many electrical characterization techniques, the two- and four-wire probe using the Cascade instrument is of interest since the resistance of the wires and the electrical contacts can be excluded by the additional two wires in four-wire probe configuration. In this paper, both two- and four-point probes configuration are employed to characterize the CIGS chalcogenide thin-film solar cells. The two-wire probe has been used to measure the current–voltage characteristics of the cell which results in a huge internal resistance. Therefore, the four-wire connection is also used to eliminate the load resistance to enhance the characterization’s accuracy. The load resistance in the two-wire probe diminishes the photogenerated current density at smaller voltage ranges. In contrast, the proposed four-wire probe collects more current at higher voltages due to enhanced carrier collection efficiency from contact electrodes. The current conduction mechanism is also identified at every voltage region represented by the value of the ideality factor of that voltage region. It is observed that a longer time given to the charge collection results in increased current density at a higher voltage. According to the results and device characteristics, a novel double-diode model is suggested to extract the saturation current density, shunt and series resistances and ideality factor of the cells. These cells are shown to be efficient in terms of low recombination at the interfaces and with lower series resistance as the quality of the materials is in its most possible conductive form. The measured internal resistance and saturation current density and ideality factor of the two measurement configurations are measured and compared.


Sign in / Sign up

Export Citation Format

Share Document