scholarly journals Research on Modal Parameter Identification Method of Railway Carbody Based on 6-DOF Vibration Test Bench

Author(s):  
Jia Zhang ◽  
◽  
Jinghan Wen ◽  
Ye Song ◽  
Pingbo Wu

In order to avoid the additional influence on the test results caused by the inconsistency between the boundary conditions of the carbody and the reality when using the vibration exciter or hammer to test the free mode of the carbody, a 6-DOF vibration test bench is tried to simulate the actual motion posture of the carbody to test its modal parameters. For in-depth discussion, a full-scale virtual prototype of the 6-DOF vibration test bench was built, and on this basis, the test bench-carbody rigidflexible coupling virtual test system was established. According to the modal frequency range of the carbody to be tested and the actual load capacity of the test bench, the excitation frequency and amplitude of the test bench are determined. Through the virtual modal test, it is determined that the carbody should be elastically supported when testing the modal parameters of the carbody by using the vibration test bench, so as to accurately obtain the modal parameters of the carbody.

2009 ◽  
Vol 69-70 ◽  
pp. 560-564
Author(s):  
Yang Yu Wang ◽  
Shi Ming Ji ◽  
Dong Hui Wen ◽  
Xian Zhang

Vibrations in polishing machinery may affect the manual or automatic controls and reduce the efficiency of the operations to be carried out. In this article, an experimental and numerical analysis on the dynamic characteristic of a gearbox casing in polishing machinery have been carried out. The numerical investigation was achieved with NASTRAN based on a 3D FEM model and the experimental modal analysis for the determination of the natural frequencies and the associated eigenmodes of the gearbox casing with LMS structural vibration test system was performed. The fundamental modal parameters including the first 10-order natural frequencies, damping ratios and mode shapes were estimated and identified. Analytical and experimental results have been compared and discussed. Agreement between measurements and calculations is satisfactory and the results can be used as reliable reference for improving the dynamic behavior of the gearbox casing.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Chen Wang ◽  
Minghui Hu ◽  
Zhinong Jiang ◽  
Yanfei Zuo ◽  
Zhenqiao Zhu

Abstract For the quantitative dynamic analysis of aero gas turbines, accurate modal parameters must be identified. However, the complicated structure of thin-walled casings may cause false mode identification and mode absences if conventional methods are used, which makes it more difficult to identify the modal parameters. A modal parameter identification method based on improved covariance-driven stochastic subspace identification (covariance-driven SSI) is proposed. The ability to reduce the number of mode absences and the solving stability are improved by a covariance matrix dimension control method. Meanwhile, the number of false mode identification is reduced via a false mode elimination method. In addition, the real mode complementation and the excitation frequency mode screening can be realized by a multispeed excitation method. The numerical results of a typical rotor model and measured data of an aero gas turbine validated the proposed method.


Author(s):  
Wei Chen ◽  
Robert O’Reilly ◽  
Huy Tang

Sensitivities of microelctromechanical system (MEMS) accelerometers are typically measured and calibrated at final production test of packaged devices. This process typically requires expensive special automated test equipment (ATE) that can generate vibration stimulus. A single-axis vibration test system has been developed on an existing commercial wafer probe/trim system to calibrate sensitivities of MEMS accelerometers during wafer probe/trim process to minimize the need for such vibration test equipment. To increase signal to noise ratio but avoid damage of probe pad/pin during the test, the vibration exciter must be able to generate high frequency but small displacement vibration stimulus. The vibration exciter also needs to be small enough to fit into the existing commercial probe/trim system and requires minimum changes to the system. A high resolution but small size in-situ noncontact vibration measurement technique is needed to ensure calibration accuracy. This paper presents a unique solution to meet all these challenges. The success of this system has been validated by final product test data of a test device, a 3-axis low-g MEMS accelerometer.


Author(s):  
Tae Ho Kim ◽  
Moon Sung Park ◽  
Jongsung Lee ◽  
Young Min Kim ◽  
Kyoung-Ku Ha ◽  
...  

Gas foil bearings (GFBs) have clear advantages over oil-lubricated and rolling element bearings, by virtue of low power loss, oil-free operation in compact units, and rotordynamic stability at high speeds. However, because of the inherent low gas viscosity, GFBs have lower load capacity than the other bearings. In particular, accurate measurement of load capacity and dynamic characteristics of gas foil thrust bearings (GFTBs) is utmost important to widening their applications to high performance turbomachinery. In this study, a series of excitation tests were performed on a small oil-free turbomachinery with base excitations in the rotor axial direction to measure the dynamic load characteristics of a pair of six-pad, bump-type GFTBs, which support the thrust collar. An electromagnetic shaker provided dynamic sine sweep loads to the test bench (shaking table), which held rigidly the turbomachinery test rig for increasing excitation frequency from 10 Hz to 200 Hz. The magnitude of the shaker dynamic load, represented as an acceleration measured on the test rig, was increased up to 9 G (gravity). An eddy current sensor installed on the test rig housing measured the axial displacement (or vibrational amplitude) of the rotor thrust collar during the excitation tests. The axial acceleration of the rotor relative to the test rig was calculated using the measured displacement. A single degree-of-freedom base excitation model identified the frequency-dependent dynamic load capacity, stiffness, damping, and loss factor of the test GFTB for increasing shaker dynamic loads and increasing bearing clearances. The test results show that, for a constant shaker force and the test GFTB with a clearance of 155 μm, an increasing excitation frequency increases the dynamic load carried by the test GFTB, i.e., bearing reaction force, until a certain value of the frequency where it jumps down suddenly because of the influence from Duffing’s vibrations of the rotor. The bearing stiffness increases and the damping decreases dramatically as the excitation frequency increases. Generally, the bearing loss factor ranges from 0.5 to 1.5 independent of the frequency. As the shaker force increases, the bearing dynamic load, stiffness, damping, and loss factor increase depending on the excitation frequency. Interestingly, the agreements between the measured GFTB dynamic load versus the thrust runner displacement, the measured GFTB static load versus the structural deflection, and the predicted static load versus the thrust runner displacement are remarkable. Further tests with increasing GFTB clearances of 155, 180, 205, and 225 μm revealed that the vibrational amplitude increases and the jump-down frequency decreases with increasing clearances. The bearing load increases, but the bearing stiffness, damping, and loss factor decrease slightly as the clearance increases. The test results after a modification of the GFTB by rotating one side bearing plate by 30° relative to the other side bearing plate revealed insignificant changes in the dynamic characteristics. The present dynamic performance measurements provide a useful database of GFTBs for use in microturbomachinery.


2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.


2018 ◽  
Vol 19 (01) ◽  
pp. 1940010 ◽  
Author(s):  
Yan-Chun Ni ◽  
Qi-Wei Zhang ◽  
Jian-Feng Liu

Modal identification aims at identifying the dynamic properties including natural frequency, damping ratio, and mode shape, which is an important step in further structural damage detection, finite element model updating, and condition assessment. This paper presents the work on the investigation of the dynamic characteristics of a long-span cable-stayed bridge-Sutong Bridge by a Bayesian modal identification method. Sutong Bridge is the second longest cable-stayed bridge in the world, situated on the Yangtze River in Jiangsu Province, China, with a total length of 2 088[Formula: see text]m. A short-term nondestructive on-site vibration test was conducted to collect the structural response and determine the actual dynamic characteristics of the bridge before it was opened to traffic. Due to the limited number of sensors, multiple setups were designed to complete the whole measurement. Based on the data collected in the field tests, modal parameters were identified by a fast Bayesian FFT method. The first three modes in both vertical and transverse directions were identified and studied. In order to obtain modal parameter variation with temperature and vibration levels, long-term tests have also been performed in different seasons. The variation of natural frequency and damping ratios with temperature and vibration level were investigated. The future distribution of the modal parameters was also predicted using these data.


ACTA IMEKO ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 86 ◽  
Author(s):  
Mariella Diaferio ◽  
Dora Foti ◽  
Nicola Ivan Giannoccaro ◽  
Salvador Ivorra Ivorra

This paper presents the dynamic experimental campaign carried out on a stocky masonry clock tower situated in the Swabian Castle of Trani (Italy). The main objective of this paper is, after estimating the main frequencies and vibration modes of the considered structure, defining the transmission of vibrations along the height of the tower by varying the forced frequency at the base. At this aim, short acceleration records have been acquired simultaneously in 20 points of the tower at different levels, due to a series of sinusoidal forced vibrations applied at the base by using a pneumatic shaker device specify designed for the tests. The proposed procedure permit to extract for each monitored point the amplitude of the sinusoidal component related to the excitation frequency and the phase shift due to the structure damping. The results of the proposed procedure are compared with the results of a classical operational modal analysis in environmental conditions in order to demonstrate that the short forced tests permit to classify the typology of the structure mode shapes.


2012 ◽  
Vol 226-228 ◽  
pp. 44-47 ◽  
Author(s):  
Jiang Yi Chen ◽  
Li Ge Fan ◽  
Dong Chen Qin

In this paper, we derive the universal expression of the modal parameters for a damaged beam under arbitrary boundary conditions. The delta function is first employed to describe a notch damage in the beam and consequently to derive the governing equation for the damaged beam. Second, by virtue of the perturbation method, the eigenvalues and the corresponding mode shapes are obtained for the damaged beam. Finally, numerical examples are given for an elastically supported beam. It is believed that the proposed approach could provide the necessary theoretical background for damage identification in beam structures.


Author(s):  
Adolfo Delgado

Compliant hybrid gas bearings combine key enabling features from both fixed geometry externally pressurized gas bearings and compliant foil bearings. The compliant hybrid bearing relies on both hydrostatic and hydrodynamic film pressures to generate load capacity and stiffness to the rotor system, while providing damping through integrally mounted metal mesh bearing support dampers. This paper presents experimentally identified force coefficients for a 110 mm compliantly damped gas bearing using a controlled-motion test rig. Test parameters include hydrostatic inlet pressure, excitation frequency, and rotor speed. The experiments were structured to evaluate the feasibility of implementing these bearings in large size turbomachinery. Dynamic test results indicate weak dependency of equivalent direct stiffness coefficients to most test parameters except for frequency and speed, where higher speeds and excitation frequency decreased equivalent bearing stiffness values. The bearing system equivalent direct damping was negatively impacted by increased inlet pressure and excitation frequency, while the cross-coupled force coefficients showed values an order of magnitude lower than the direct coefficients. The experiments also include orbital excitations to simulate unbalance response representative of a target machine while synchronously traversing a critical speed. The results indicate that the gas bearing can accommodate vibration levels larger than the set bore clearance while maintaining satisfactory damping levels.


Sign in / Sign up

Export Citation Format

Share Document