scholarly journals Kinetic Analysis of the Adsorption of Cibacron Blue onto Bean Peel

Author(s):  
Ain Aqilah Basirun ◽  
Mohd Yunus Shukor

Biosorption is a kind of sorption technology in which the sorbent is derived from a biological source. At the moment, biosorption is seen as a simple, cost-effective, and environmentally friendly process that might be employed as a viable alternative to conventional techniques of pollution removal. When it comes to improper textile waste disposal, it falls under one of the branches of bioremediation that is used to reduce contamination in the setting of improper textile waste disposal. The sorption isotherm of Cibacron Blue onto bean peel were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation and the best was pseudo-2nd order based on statistical analysis such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC). Nonlinear regression analysis using the pseudo-2nd order model gave values of equilibrium sorption capacity qe of 6.164 mg/g (95% confidence interval from 5.918 to 6.410 ) and a value of the pseudo-2nd-order rate constant, k2 of 0.034 (95% confidence interval from 0.024 to 0.045). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.

2021 ◽  
Vol 9 (2) ◽  
pp. 48-52
Author(s):  
Ibrahim Alhaji Sabo ◽  
Salihu Yahuza ◽  
Bilal Ibrahim Dan-Iya ◽  
Abdussamad Abubakar

Malachite green is extensively used in the textile dye industry and in agriculture as fish pests’ pesticide. Biosorption is a type of sorption technique that uses a biological sorbent. As of now, biosorption is viewed as a simple and cost-effective process that might be used as an alternative to traditional pollution treatment methods. Bioremediation is one of the branches of bioremediation that is used to minimise pollution in the context of incorrect textile waste disposal. The sorption isotherm of Malachite Green onto graphene oxide were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation and the best was pseudo-2nd order based on statistical analysis such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC). Nonlinear regression analysis using the pseudo-2nd order model gave values of equilibrium sorption capacity qe of 6.164 mg/g (95% confidence interval from 5.918 to 6.410) and a value of the pseudo-2nd-order rate constant, k2 of 0.034 (95% confidence interval from 0.024 to 0.045). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.


2021 ◽  
Vol 9 (2) ◽  
pp. 35-39
Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Ain Aqilah Basirun ◽  
Mohd Yunus Shukor

An example of biosorption is when the sorbent is made from a biodegradable material. Biosorption is now being seen as a simple, cost-effective, and environmentally acceptable alternative to traditional pollution treatment methods. Bioremediation is one of the branches of bioremediation that is used to minimise pollution in the context of incorrect dye waste disposal. The sorption isotherm of Ethyl Violet onto graphene oxide were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC) that showed that the pseudo-second-order model was the best which was the same finding from the original published work. The calculated evidence ratio was 11 with an AICc probability value of 0.91 indicating that the best model was at least 11 times better than the nearest best model, which was pseudo-1st. Further analysis is needed to provide proof for the mechanism usually tied to this kinetic. Nonlinear regression analysis using the pseudo-2nd order model for the highest concentration tested, which was 10 mM, gave values of equilibrium sorption capacity qe of 30.928 mg/g (95% confidence interval from 29.328 to 32.527) and a value of the pseudo-2nd-order rate constant, k2 of 0.020 (95% confidence interval from 0.011 to 0.028).


Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Salihu Yahuza ◽  
Ibrahim Alhaji Sabo

The widespread use of chromium in industrial applications such as leather tanning, metallurgy, electroplating, and refractory materials has resulted in it being one of the most harmful trace elements to be introduced into surface and ground waters. The sorption isotherm of chromium sorption onto calcium alginate nanoparticles were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation followed by the pseudo-1st order. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC) that showed that the pseudo-1ST order model is the best model. Kinetic analysis using the pseudo-1st order model at 400 mg/L 4-BDE gave a value of equilibrium sorption capacity qe of 31.89 mg g-1 (95% confidence interval from 30.37 to 33.42) and a value of the pseudo-1st-order rate constant, k1 of 0.22 (95% confidence interval from 0.019 to 0.025). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.


2021 ◽  
Vol 3 (2) ◽  
pp. 20-24
Author(s):  
Mohd Yunus Shukor

Biosorption is a sort of sorption technology in which the sorbent is a substance that is biologically sourced. In today's world, biosorption is seen as a simple, inexpensive, and ecologically friendly way for removing pollutants from the environment. One of the branches of bioremediation that is utilised to decrease environmental pollution in the context of minimising improper textile waste disposal is this method. The sorption isotherm of Cibacron Blue onto bean peel were analyzed using ten models—Henry, Langmuir, Dubinin-Radushkevich, Freundlich, BET, Toth, Sips, Fritz-Schlunder IV, Baudu and Fritz-Schlunder V, and fitted using non-linear regression. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), BIC and HQC showed that the Freundlich model was the best model in terms of overall best criteria. The calculated evidence ratio was 8 with an AICc probability value of 0.89 indicating that the best model was at least 8 times better than the nearest best model, which was Sips. The calculated Freundlich parameters KF (Freundlich isotherm constant) and nF (Freundlich exponent) were 5.369 (L/g) (95% confidence interval from 4.359 to 6.379) and 3.125 (95% confidence interval from 2.717 to 3.533). The Langmuir constant was utilized to calculate the maximum adsorption capacity QmL (mg/g) which gave a value of 27.83 mg/g (95% confidence interval from 23.69 to 31.98). The nonlinear regression method allows for the parameter values to be represented in the 95% confidence interval range which can better allow comparison with published results.


2021 ◽  
Vol 9 (2) ◽  
pp. 19-22
Author(s):  
Salihu Yahuza ◽  
Ibrahim Alhaji Sabo ◽  
Hadiza Aliyu Biu

Azo dyes, such as Remazol Black B, are different from conventional dyes in that they establish covalent bonds with textile fibers like cotton. They are widely utilized in the textile industry because of their favorable properties of bright color, water resistance, simple application procedures, and low energy consumption. Their discharge into receiving streams has major environmental consequences, such as reducing photosynthesis in aquatic life due to lower light penetration. The biosorption isotherm data of Remazol Black B dye biosorption by Aspergillus flavus were investigated using two models—pseudo-1st order and pseudo-2nd order—and fitted using non-linear regression. The pseudo-1st order model was found to be the best by statistical analysis using root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC), and Hannan–Quinn information criterion (HQC). At 250 mg/L, kinetic analysis using the pseudo-1st order model yielded an equilibrium sorption capacity qe of 4.61 mg/g (95 % confidence interval from 4.54 to 4.68) and a pseudo-1st-order rate constant, k1 of 0.15 (95% C.I. from 0.128 to 0.164).


2021 ◽  
Vol 9 (2) ◽  
pp. 1-7
Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Mohd Yunus Shukor

Because of its extensive usage in industrial applications such as leather tanning, metallurgy, electroplating, and refractory materials, chromium is one of the most dangerous trace elements introduced into surface and ground waters. The sorption isotherm of chromium sorption onto calcium alginate nanoparticles were analyzed using ten models—Henry, Langmuir, Dubinin-Radushkevich, Freundlich, BET, Toth, Sips, Fritz-Schlunder IV, Baudu and Fritz-Schlunder V, and fitted using non-linear regression. Only the Toth and Fritz-Schlunder V models were unable to fit the data. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), BIC and HQC showed that the Langmuir model was the best model in terms of overall best criteria. The calculated evidence ratio was 7 with an AICc probability value of 0.87 indicating that the best model was at least 7 times better than the nearest best model, which was Freundlich. The calculated Langmuir parameters qmL value of 79.174 mg/g (95% confidence interval from 50.702 to 107.646) and bL value of 0.332 L/mg (95% confidence interval from 0.294 to 0.371) is not much different from the linearized published work for the qmL value of 145 mg/g but lower than the bL value of 0.34 L/mg. The nonlinear regression method allows for the parameter values to be represented in the 95% confidence interval range which can better allow comparison with published results.


2020 ◽  
Author(s):  
Anurag Sohane ◽  
Ravinder Agarwal

Abstract Various simulation type tools and conventional algorithms are being used to determine knee muscle forces of human during dynamic movement. These all may be good for clinical uses, but have some drawbacks, such as higher computational times, muscle redundancy and less cost-effective solution. Recently, there has been an interest to develop supervised learning-based prediction model for the computationally demanding process. The present research work is used to develop a cost-effective and efficient machine learning (ML) based models to predict knee muscle force for clinical interventions for the given input parameter like height, mass and angle. A dataset of 500 human musculoskeletal, have been trained and tested using four different ML models to predict knee muscle force. This dataset has obtained from anybody modeling software using AnyPyTools, where human musculoskeletal has been utilized to perform squatting movement during inverse dynamic analysis. The result based on the datasets predicts that the random forest ML model outperforms than the other selected models: neural network, generalized linear model, decision tree in terms of mean square error (MSE), coefficient of determination (R2), and Correlation (r). The MSE of predicted vs actual muscle forces obtained from the random forest model for Biceps Femoris, Rectus Femoris, Vastus Medialis, Vastus Lateralis are 19.92, 9.06, 5.97, 5.46, Correlation are 0.94, 0.92, 0.92, 0.94 and R2 are 0.88, 0.84, 0.84 and 0.89 for the test dataset, respectively.


Forecasting ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 39-55
Author(s):  
Rodgers Makwinja ◽  
Seyoum Mengistou ◽  
Emmanuel Kaunda ◽  
Tena Alemiew ◽  
Titus Bandulo Phiri ◽  
...  

Forecasting, using time series data, has become the most relevant and effective tool for fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been commonly used to predict the general trend for fish landings with increased reliability and precision. In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and both were non-stationary. The first-order differencing was applied to transform the non-stationary data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led to the identification and construction of ARIMA models, suitable in explaining the time series and forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of 2725.243 metric tons and CPUE of 0.097 kg/h by 2024.


2016 ◽  
Vol 31 (4) ◽  
pp. 274-277 ◽  
Author(s):  
Scott J. Dankel ◽  
Jeremy P. Loenneke ◽  
Paul D. Loprinzi

Purpose. Physical activity (PA) has previously been demonstrated to be inversely related with multimorbidity (having more than one chronic disease); however, it is unknown whether dual participation in both PA and muscle-strengthening activities (MSA) may further reduce the odds of being multimorbid. Therefore, the purpose of our study was to determine the association between multimorbidity and individuals meeting recommended guidelines for both PA and MSA. Design. Nonexperimental. Setting. The 2003–2006 National Health and Nutritional Examination Survey. Subjects. Four thousand five hundred eighty-seven adults aged ≥20 years. Measures. Accelerometry-measured PA, self-reported MSA, and multimorbidity. Analysis. Data were analyzed using multivariable linear and logistic regression. Results. The odds (95% confidence interval) of being multimorbid for those only meeting MSA guidelines, only meeting PA guidelines, and meeting both PA and MSA guidelines (vs. not meeting either), respectively, were .69 (.48, .98; p = .04), .55 (.44, .70; p < .01), and .38 (.27, .53; p < .01). Conclusion. Our findings demonstrate that individuals meeting recommended guidelines for both MSA and PA were less likely to be multimorbid than individuals participating in one or none of these exercise modalities. Determining effective ways to initiate and maintain concurrent adoption of MSA and PA is needed to provide a cost-effective behavioral alternative for reducing the prevalence of multimorbidity.


2021 ◽  
Vol 4 (01) ◽  
pp. 58-67
Author(s):  
Aida Bahadori Bahadori ◽  
Mehdi Ranjbar Corresponding

A simple and rapid microwave-assisted combustion method was developed to synthesize homogenous carbon nanostructures (HCNS). This research presents a new and novel nanocomposite structures for removal of methylene red (2-(4- Dimethylaminophenylazo)benzoic acid), methylene orange (4-[4-(Dimethylamino)phenylazo]benzenesulfonic acid sodium salt) and methylene blue (3,7-bis(Dimethylamino)phenazathionium chloride)with semi degradation-adsorption solid phase extraction (SDA-SPE) procedure before determination by UV-VIS spectroscopy. A covalent organic frameworks (COFs) with high purity were synthesized and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the self-assembled carbon nanostructures (COFs) synthesized with the cost-effective method which was used as a novel adsorbent for adsorption of dyes after semi-degradation of methylene red, orange and blue (1-5 mg L-1) as an organic dye by titanium dioxide (TiO2) nanoparticales in presence of UV radiation. Based on results, the COFs/TiO2 has good agreement with the Langmuir adsorption isotherm model with favorite coefficient of determination (R2= 0.9989). The recovery of dye removal based on semi-degradation/adsorption of COFs/TiO2 and adsorption of COFs were obtained 98.7% and 48.3%, respectively (RSD less than 5%). The method was validated by spiking dye to real samples.


Sign in / Sign up

Export Citation Format

Share Document