scholarly journals Isolation and Characterization of Copper Tolerant Bacterial Species Habituating in Copper Mines and Study of Their Potentiality as a Plant Growth Stimulator

Author(s):  
Krishnendu Majhi ◽  
Moitri Let ◽  
Urmi Halder ◽  
Rajib Bandopadhyay

Abstract Copper (Cu) is a vital micronutrient for all living organisms below its toxicity limit. Various industrial activities, mining deposits, excessive use of harmful chemicals, waste discharges, and drugs are the main reason for the emerging copper concentration. Emphases of the current study were to isolate and characterize highly copper-tolerating bacterial (CTB) species from a copper-contaminated site. In enrichment culture techniques, 24 copper tolerant microbial isolates were evaluated and the maximum tolerable concentration (MTC) was determined using various concentrations of copper sulfate pentahydrate (CuSO4.5H2O) solution. Three bacterial strains named GKSM2, GKSM6, and GKSM11 were tolerant to 350 mg/l of CuSO4.5H2O. The 16S rRNA gene sequencing and phylogeny data revealed that these CTB belong to species Bacillus zanthoxyli, Bacillus stercoris, and Pseudomonas alcaliphila species. CTB showed their optimized growth at moderate salt concentration (0.1-0.5M NaCl), temperature range (20-45˚C) and wide pH range (pH 5.0-11). All the strains can produce various Plant growth stimulating (PGS) traits viz., phytohormones (IAA, GA), proline, nitrogen fixation, ammonification, and antioxidant enzymes in presence and absence of Cu2+ stress. The result displays that adsorption of Cu2+ ions evidenced by TEM, SEM, and SEM-EDX analysis.

2021 ◽  
Vol 9 (2) ◽  
pp. 7-12
Author(s):  
Abdulrahman Abdulhamid Arabo ◽  
Raji Arabi Bamanga ◽  
Mujiburrahman Fadilu ◽  
Musa Abubakar ◽  
Fatima Abdullahi Shehu ◽  
...  

This study aimed to isolate and identify biosurfactant producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using conventional enrichment culture technique where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that shows positive signs for drop collapse, foaming, haemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolates B11, the optimum PH was confirmed as 8.0 for the isolate, Similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favourable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA sequencing.


2003 ◽  
Vol 66 (10) ◽  
pp. 1798-1804 ◽  
Author(s):  
SHIGERU NAKANO ◽  
TORU KOBAYASHI ◽  
KENICHI FUNABIKI ◽  
ATSUSHI MATSUMURA ◽  
YASUHIRO NAGAO ◽  
...  

A broad-range PCR assay for the detection of bacteria belonging to the Enterobacteriaceae family was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 72 different bacterial species (of 49 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for every tested Vibrioaceae or Enterobacteriaceae strain except Proteus mirabilis. For all other bacterial strains and eukaryotes tested, results were negative. Bacterial DNA for PCR was prepared by a simple procedure with the use of Chelex 100 resin from culture after growth in brain heart infusion medium. To test this PCR assay for the monitoring of the Enterobacteriaceae family, either Escherichia coli or Salmonella Enteritidis was inoculated into various foods as an indicator. Prior to the PCR, the inoculation of 10 to 40 CFU of bacteria per g of food was followed by a 5-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. When actual examinations of the contamination of 15 noodle foods with Enterobacteriaceae by this PCR assay were conducted, 33% (5 of 15) of the samples tested positive. These results agreed with those of the Petri film Enterobacteriaceae Count Plate assay. Including the enrichment culture step, the entire PCR detection process can be completed within 7 h.


2019 ◽  
Vol 5 ◽  
pp. 38-56 ◽  
Author(s):  
Khulod A. Hemida ◽  
Amany M.M. Reyad

Salinity is one of the most dangerous environmental limiting factors of the plant productivity. A wide range of adaptation strategies is required to overcome salinity stress. However, such strategies seem to be long drawn and cost-intensive. It has been confirmed in recent years that plant growth promoting endophytes (PGPEs) that have the ability to further build a symbiotic association with their host to improve host plant salt tolerance. In our investigation try to improve plant salt tolerance using different species of endophytic bacteria. From the total eight endophytic bacterial species were isolated from root, stem, and leaf of Carthamustinctorius (safflower) plant, two isolates were capable of using 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source, and they are of positive results for (ACC) deaminase activity and indole-3-acetic acid (IAA) production. The bacterial isolates were identified using 16S ribosomal DNA technique as Bacillus cereus and Bacillus aerius and had accession numbers MG708176 and MG711593 respectively, by submitting their sequences in GenBank database. This study showed that the bacterial strains B. cereus and B. aerius are valuable biological plant growth promoters that could enhance salt tolerance in Safflower plants under 100, 200, and 300mMNaCl levels resulting in an increase in plant growth and ascorbate-glutathione redox cycle, in comparison with the non-inoculated controls. Our findings reported that the co-inoculation of the two selected endophytic bacteria strains were successfully isolated from Safflower seedlings significantly alleviated the harmful effects of salt stress, promoted plant growth and biomass yield.


2017 ◽  
Vol 63 (5) ◽  
pp. 450-463 ◽  
Author(s):  
Zoulikha Bouchiba ◽  
Zineb Faiza Boukhatem ◽  
Zohra Ighilhariz ◽  
Nouria Derkaoui ◽  
Benaissa Kerdouh ◽  
...  

A total of 51 bacterial strains were isolated from root nodules of Scorpiurus muricatus sampled from 6 regions of western Algeria. Strain diversity was assessed by rep-PCR amplification fingerprinting, which grouped the isolates into 28 different clusters. Partial nucleotide sequencing of the 16S rRNA gene and BLAST analysis revealed that root nodules of S. muricatus were colonized by different species close to Rhizobium vignae, Rhizobium radiobacter, Rhizobium leguminosarum, Phyllobacterium ifriqiyense, Phyllobacterium endophyticum, Starkeya sp., and Pseudomonas sp. However, none of these strains was able to form nodules on its host plant; even nodC was present in a single strain (SMT8a). The inoculation test showed a great improvement in the growth of inoculated plants compared with noninoculated control plants. A significant amount of indole acetic acid was produced by some strains, but only 2 strains could solubilize phosphate. In this report we described for the first time the diversity of bacteria isolated from root nodules of S. muricatus growing in different regions in western Algeria and demonstrated their potential use in promoting plant growth.


2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


Author(s):  
Ajay S. Arya ◽  
Minh T. H. Hang ◽  
Mark A. Eiteman

Bacteria were isolated from wastewater and soil containing charred wood remnants based on their ability to use levoglucosan as a sole carbon source and on their levoglucosan dehydrogenase (LGDH) activity. On the basis of their 16S rRNA gene sequences, these bacteria represented diverse genera of Microbacterium, Paenibacillus , Shinella , and Klebsiella . Genomic sequencing of the isolates verified that two isolates represented novel species, Paenibacillus athensensis MEC069 T and Shinella sumterensis MEC087 T , while the remaining isolates were closely related to either Microbacterium lacusdiani or Klebsiella pneumoniae . The genetic sequence of LGDH, lgdA , was found in the genomes of these four isolates as well as Pseudarthrobacter phenanthrenivorans Sphe3. The identity of the P. phenanthrenivorans LGDH was experimentally verified following recombinant expression in E. coli . Comparison of the putative genes surrounding lgdA in the isolate genomes indicated that several other gene products facilitate the bacterial catabolism of levoglucosan, including a putative sugar isomerase and several transport proteins. Importance Levoglucosan is the most prevalent soluble carbohydrate remaining after high temperature pyrolysis of lignocellulosic biomass, but it is not fermented by typical production microbes such as Escherichia coli and Saccharomyces cerevisiae . A few fungi metabolize levoglucosan via the enzyme levoglucosan kinase, while several bacteria metabolize levoglucosan via levoglucosan dehydrogenase. This study describes the isolation and characterization of four bacterial species which degrade levoglucosan. Each isolate is shown to contain several genes within an operon involved in levoglucosan degradation, furthering our understanding of bacteria which metabolize levoglucosan.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 621 ◽  
Author(s):  
Ahmad ◽  
Naseer ◽  
Hussain ◽  
Zahid Mumtaz ◽  
Mustafa ◽  
...  

Chickpea is an important leguminous crop that improves soil fertility through atmospheric nitrogen fixation with the help of rhizobia present in nodules. Non-rhizobia endophytes are also capable of inducing nodulation and nitrogen fixation in leguminous crops. The aim of the current study was to isolate, characterize and identify the non-rhizobia endophytic bacterial strains from root nodules of chickpea. For this purpose, more than one hundred isolates were isolated from chickpea root nodules under aseptic conditions and were confirmed as endophytes through re-isolating them from root nodules of chickpea after their inoculation. Nineteen confirmed endophytic bacterial strains revealed significant production of indole acetic acid (IAA) both in presence and absence of L-tryptophan and showed their ability to grow under salt, pH and heavy metal stresses. These strains were evaluated for in vitro plant growth promoting (PGP) traits and results revealed that seven strains showed solubilization of P and colloidal chitin along with possessing catalase, oxidase, urease and chitinase activities. Seven P-solubilizing strains were further evaluated in a jar trial to explore their potential for promoting plant growth and induction of nodulation in chickpea roots. Two endophytic strains identified as Paenibacillus polymyxa ANM59 and Paenibacillus sp. ANM76 through partial sequencing of the 16S rRNA gene showed the maximum potential during in vitro PGP activities and improved plant growth and nodulation in chickpea under the jar trial. Use of these endophytic strains as a potential biofertilizer can help to reduce the dependence on chemical fertilizers while improving crop growth and soil health simultaneously.


2011 ◽  
Vol 77 (18) ◽  
pp. 6531-6538 ◽  
Author(s):  
Keren Buhnik-Rosenblau ◽  
Yael Danin-Poleg ◽  
Yechezkel Kashi

ABSTRACTThe gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines.Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, theL. johnsoniilevel decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance ofL. johnsoniilevels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similarL. johnsoniilevels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence ofL. johnsoniiin the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.


2019 ◽  
Vol 67 (4) ◽  
Author(s):  
Felipe Romero-Perdomo ◽  
Jhonnatan Ocampo-Gallego ◽  
Mauricio Camelo-Rusinque ◽  
Ruth Bonila

In this study, we aimed at examining the potential to stimulate growth in Pennisetum clandestinum using four isolated bacterial strains from soils obtained from a Colombian tropical silvopastoral system. We previously identified genetically the strains and characterized two plant growth promotion activities. We found that the four bacterial strains were phylogenetically associated with Klebsiella sp. (strains 28P and 35P), Beijerinka sp. (37L) and Achromobacter xylosoxidans (E37), based on partial 16S rRNA gene sequencing. Moreover, the in vitro biochemical assays demonstrated that the strains exhibited some plant growth promotion mechanisms such as 1-aminocyclopropane-1-carboxylic acid deaminase activity and indole compound synthesis. Notably, bacterial inoculation under greenhouse conditions showed a positive influence on P. clandestinum growth. We found a significant (p < 0.05) effect on root and shoot length, and shoot dry weight. Shoot length increased by 52% and 30% with 37L and 35P, respectively, compared to those without inoculation treatment. Similarly, the use of 37L and 28P raised shoot dry weight values by 170% and 131%, respectively. In root development, inoculation with strains 37L and E37 increased root length by 134% and 100%, respectively. Beijerinckia sp. 37L was the most effective of the four strains at increasing P. clandestinum biomass and length.


2021 ◽  
Vol 37 (6) ◽  
pp. 662-672
Author(s):  
Shin Ae Lee ◽  
Hyeon Su Kim ◽  
Mee Kyung Sang ◽  
Jaekyeong Song ◽  
Hang-Yeon Weon

Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.


Sign in / Sign up

Export Citation Format

Share Document