Isolation and Characterization of Hydrocarbon-degrading Bacteria in Soils of Mechanical Workshops in Maiduguri, Borno State

2021 ◽  
Vol 4 (2) ◽  
pp. 35-38
Author(s):  
Hussaini Shettima ◽  
Ibrahim Alkali Allamin ◽  
Nasir Halima ◽  
Haruna Yahya Ismail ◽  
Yusuf Musa

The study was conducted to determine the distribution of hydrocarbon utilizing bacteria in spent engine oil (SEO) contaminated soil. Five mechanical workshops within Maiduguri Metropolis. Five bulk soil sample comprising of one each of the five sites; the sites are Leventis Area on Kashim Ibrahim Way, Damboa Raod, Boiler (commonly called Bola) near Maiduguri Monday Market, Ngomari, on Kano Road, and 1000 Housing Estate, also on Kano Road. Nutrient agar was used, or isolation and enumeration total heterotrophic bacteria and Mineral salt agar was used for the isolation and enumeration of hydrocarbon utilizing bacteria. The result shows THB (92.0x104) at Damboa road (DR) to as higher and (78.8x104) at Bola area (BL) while HUB (2.0x104) at Damboa road (DR) and as high as (9.3x104) at Bola area (BL). The bacterial species isolated were species of Bacillus licheniformis, Bacillus subtilis, Bacillus coagulans, Bacillus alvei, Bacillus cereus, Bacillus lentus other are Pseudomonas aeruginosa, Klebsiella pneumonia. Bacillus licheniformis, and Bacillus subtilis are the most occurring bacterial isolates identified. The ability of those bacterial isolate to degrade hydrocarbon buoyantly will help in remediation of oil polluted environments.

2020 ◽  
Vol 2 (2) ◽  
pp. 12-16
Author(s):  
Obhioze Augustine Akpoka

The capability of indigenous bacteria and microalgae in crude oil effluents to grow in and utilize crude oil as their sole source of carbon and energy provides an environmentally friendly and economical process for dealing with crude oil pollution and its inherent hazards. In view of the toxicity of crude oil spillages to indwellers of the affected ecosystems and the entire affected environment, the isolation of pure bacterial and microalgae cultures from crude effluents is a step in the right direction, particularly for bio-augmentation or bioremediation purposes. The total heterotrophic bacteria count and hydrocarbon utilizing bacteria count, as well as the microalgae count, were determined with the pour plate technique. The physicochemical properties of the effluent samples were also analyzed. Identification of the hydrocarbon utilizing bacteria was performed with phenotypic techniques. The result shows a mean total heterotrophic bacterium count of 5.91 log CFU/ml and a mean microalga count of 4.77 log cells/ml. When crude oil and polycyclic aromatic hydrocarbon (PAH) were used as sole carbon sources, total hydrocarbon utilizing bacteria counts were respectively estimated at 3.89 and 2.89 log CFU/ml. Phenotypic identification of hydrocarbon utilizing bacteria in the crude oil effluents revealed the presence of two main bacterial genera: Streptococcus and Pseudomonas. Data obtained from this study confirmed the biodegradative abilities of indigenous bacterial species, thus, ultimately resulting in the amelioration of the toxicity associated with the crude oil effluents.


2014 ◽  
Vol 3 (2) ◽  
pp. 36-47 ◽  
Author(s):  
IA Allamin ◽  
UJJ Ijah ◽  
HY Ismail ◽  
ML Riskuwa

Soil samples were collected from five sites covering petroleum exploration station in Kukawa, Kukawa Local Government Area of Borno State, Nigeria between October, 2012 and February, 2013 at two different depths (0-10cm and 10-20cm) to enumerate and identify hydrocarbon degrading bacteria in the soil. Total aerobic heterotrophic bacteria (TAHB) were enumerated on Nutrient agar (NA), and Hydrocarbon utilizing bacteria (HUB) enumerated on Oil agar (OA). The bacterial isolates were identified using morphological and biochemical tests. It was observed that the microorganisms (TAHB, and HUB) were more densely populated at 10cm depth. (TAHB: 5.3×108 - 11.4×108cfu/g, and HUB: 2.4×105 - 5.3×105 cfu/g, than at 20 cm depth (TAHB: 3.0×108 - 5.7×108 cfu/g, and HUB: 2.1×105 - 4.8×105 cfu/g). The HUB was identified as species of Bacillus, Pseudomonas, Klebsiella, Lactobacillus, Micrococcus, Corynebacterium, and Actinomyces. Bacillus, and Pseudomonas species were more constantly isolated than other isolates and they constitute 100% of total bacterial isolates. The potential of hydrocarbon utilizing bacteria isolated to degrade hydrocarbon was studied. Nineteen (19) bacterial species was screened, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Micrococcus leteus,and Lactobacillus casei, utilized and degrade crude oil at considerably high rates after 21 days of incubation. The degradation efficiency was confirmed by GC-MS analysis, which indicated that the bacterial isolates utilized most of the crude oil components particularly straight chain alkanes and cycloalkanes DOI: http://dx.doi.org/10.3126/ije.v3i2.10503 International Journal of the Environment Vol.3(2) 2014: 36-47


2014 ◽  
Vol 3 (2) ◽  
pp. 63-75 ◽  
Author(s):  
HY Ismail ◽  
UJJ Ijah ◽  
ML Riskuwa ◽  
II Allamin

Biodegradation of spent engine oil (SEO) by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil) to 76% (contaminated rhizosphere). Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation) after 21 days, whereas the undegraded oil (control) had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2) 2014: 63-75


Fine Focus ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 7-14
Author(s):  
Chioma Blaise Chikere ◽  
Chinyere Augusta Ajuzieogu ◽  
Michael Chukwugoziem Miller

Hydrocarbon utilizers are expected to be indigenous in crude-oil polluted environments. The isolation and characterization of hydrocarbon utilizers is often a key strategy in bioremediation of hydrocarbon-polluted environments. In this study, crude-oil polluted soil samples from Obagi town, Onelga, Rivers state were enumerated and characterized for putative hydrocarbon utilizing bacterial populations. Biochemical characterization identified five bacterial species representative of five genera: Bacillus, Pseudomonas, Acinetobacter, Micrococcus and Staphylococcus. Amongst the genera of bacteria isolated, Bacillus had the highest frequency of occurrence (40%). The mean count of total heterotrophic bacteria was 1.7 X 107 cfu/g, while hydrocarbon utilizing bacteria (HUB) count mean density was 1.0 X 107 cfu/g for the three soil samples. Statistical analyses revealed no significant difference at p>0.05 between Total Heterotrophic Bacterial (THB) and Hydrocarbon Utilizing Bacterial (HUB) counts, suggesting that most of the bacteria present in the sampled sites were hydrocarbon utilizers. Findings from this study suggest the presence of indigenous putative hydrocarbon utilizing bacteria in the crude-oil polluted soil of Obagi town. Hence, a promising potential exists for future bioremediation studies on the site.


2001 ◽  
Vol 28 (1) ◽  
pp. 158-174 ◽  
Author(s):  
M Gamache ◽  
J F Blais ◽  
R D Tyagi ◽  
N Meunier

Until now, some microbiological studies have made it possible to highlight the role and identification of certain chimiolithotroph microorganisms directly involved in the simultaneous sewage sludge digestion and metal leaching (SSDML process). Moreover, some other studies have established the performance of the SSDML process for the destruction of pathogens. However, until now no study has been carried out to define the equilibrium of the heterotrophic microbial populations during the sludge acidification occurring during the operation of the SSDML process. Hence, the SSDML process was studied in batch and continuous mode employing different types of sludges (Communauté Urbaine de Québec (CUQ)-East primary sludge, Beauceville secondary sludge, and mixture of primary and secondary Valcartier sludge). The equilibrium of heterotrophic microbial populations was investigated along with sludge acidification and solids degradation. The results obtained during the SSDML process on different sludges showed a decrease followed by the destruction of a majority of heterotrophic bacterial species found in fresh sludges. The isolation and characterization of different microbial species showed that only two types of microorganisms persisted: the yeast Blastoschizomyces capitatus and an unidentified fungus.Key words: sewage sludge, simultanous bioleaching and digestion, heterotrophic bacteria, Blastoschizomyces capitatus, fungi.


Author(s):  
M. T. Dada ◽  
S. M. Wakil

Aim: This study focuses on the screening and characterisation of keratin-degrading Bacillus species from feather waste. Methods: Nine bacteria were isolated from feather waste obtained from a poultry layout at Egbeda local government secretariat, Ibadan, Nigeria. These bacteria were grown in basal medium with feather as primary source of carbon, nitrogen, sulfur and energy. Feather degrading bacteria were screened for both proteolytic activity and keratin degradation on skimmed milk agar and keratin azure medium respectively. They were also screened for their ability to degrade other keratin substrates such as hair and nail. Results: Three of the isolates with higher feather degradation levels also showed high proteolytic activity and release of azure dye. They were selected and identified phenotypically and genotypically using 16S rRNA sequencing as Bacillus licheniformis-K51, Bacillus subtilis-K50 and Bacillus sp.-K53. The bacteria were capable of degrading other keratin-containing substrates such as nail and hair. Bacillus subtilis-K50 and Bacillus licheniformis-K51 showed significant difference (P) in degradation among the three different keratin sources used yielding higher degradation with feather as keratin source with respective optical densities of 0.07 and 0.11 followed by hair and least in nails with optical densities of 0.05 and 0.07 respectively. Highest degradation of all the three keratin substrates was observed in Bacillus licheniformis-K51. Conclusion: The three isolated bacteria possess the ability to degrade keratin and utilize feather as keratin substrate. As a result, these can be considered as potential candidates for degradation and utilization of feather keratin.


Author(s):  
H. D. Nyarko ◽  
G. C. Okpokwasili ◽  
O. F. Joel ◽  
I. A. K. Galyuon

Aims: The study aimed at the quantification, isolation and characterization of hydrocarbon degrading bacteria in oil-contaminated and pristine soils. Methodology: Soil samples from petroleum hydrocarbon polluted sites at auto-mechanic workshops, a mechanic village, as well as pristine (control) soils, comprising of 14 sampling locations within Cape Coast Metropolis in the Central Region of Ghana were collected using standard sampling techniques. Collected soil samples were treated and cultured while enumerations, isolations and characterization of carbonoclastic bacteria associated were evaluated. Results: Bacterial populations isolated from hydrocarbon-polluted sites had higher aerobic counts ranging from 7.24-8.02 log10 cfu/g of soil when compared with the pristine sites (from 6.79-7.61 log10 cfu/g of soil). Also, soil samples from the mechanic village (8.76 to 7.48 log10 cfu/g of soil) recorded more bacterial counts than those from the mechanic garages (8.02 to 7.24 log10 cfu/g of soil). The calculated percentage profiles of all the hydrocarbon utilizing bacteria in the total culturable heterotrophic bacteria were low throughout the study, even though the percentage scores were all above 50%. A total of 19 hydrocarbon degraders were isolated. The isolates identified belong to the genera Pseudomonas, Proteus, Bacillus and Enterobacter. Conclusion: The outcome of the study based on the bacteria populations, identification profiles, coupled with their survival and multiplications in designated medium amended with crude oil as the carbon and energy sources, suggest their petroleum hydrocarbon degrading capabilities, hence may be used in bioremediation applications.


2016 ◽  
Vol 11 (1) ◽  
pp. 296-300
Author(s):  
J. K Singh ◽  
R Ranjan ◽  
Pranay Pankaj

Azo dyes are widely used in textile industry. Unused dyes, consisting mainly non biodegradable released along with waste water streams without any proper pre-treatment which cause nuisance for environment and accumulate in flora as well as fauna. These also exhibit allergic, carcinogenic and mutagenic properties for human beings. Isolation and screening of azo dye degrading bacteria are economic in biodegradation and detoxification. In the present study, 200 waste water samples were collected from dye-contaminated sites of textile industries and bacterial species such as Bacillus subtilis, Pseudomonas aeruginosa and Psuedomonas putida were isolated and identified. Evaluation of decolorizing properties of these bacteriae were done by UV-Vis spectroscopy (Amax 596 nm) in different concentrations using different carbon sources such as Hans’s medium and GYP medium. Maximum decolourisation of 0.1% azo dyes were recorded to be 89.0%, 91% and 86% in Hans medium containing charcoal source by Bacillus subtilis, Pseudomonas aeruginosa and Psuedomonas putida respectively at 24 hrs. These bacterial isolates may be utilized in large scale for pre-treatment for ecological balance by avoiding water pollution.


Author(s):  
Iniobong Ime James ◽  
Mayen Godwin Ben ◽  
Agnes Monday Jones ◽  
Patience Saturday Akpan ◽  
Idorenyin Idorenyin Eka ◽  
...  

Changes in soil physicochemical properties and bacterial species present in soil contaminated with waste engine oil were evaluated at three auto-mechanical workshops in Uyo, Nigeria. This work was aimed at isolating and identifying hydrocarbon degrading bacteria from waste engine oil polluted soil, and assessing their hydrocarbon-utilizing ability. Waste engine oil pollution affected soils significantly with increases in soil physicochemical properties, and heterotrophic bacterial population counts. Eight bacterial species Corynebacterium kutscheri, Pseudomonas aeruginosa, Flavobacterium aquatile, Serratia odorifera, Micrococcus agilis, Staphylococcus aureus, Micrococcus luteus and Bacillus substilis were isolated by the selective enrichment technique and screened for hydrocarbon utilization capability in mineral salt media with 1% (v/v) waste engine oil as a sole carbon and energy source. The extent of bacterial growth observed was related to the ability of organisms to biodegrade hydrocarbons present in the medium bacterium species, which showed varying hydrocarbon utilization during the 15 days of incubation. Growth in hydrocarbon medium was the most efficient in cultures of Corynebacterium kutscheri. All isolates also showed variable emulsification ability, with Corynebacterium kutscheri, showing the highest ability. These results demonstrate the presence of indigenous bacteria in hydrocarbon-polluted soils and the potential toward the remediation of hydrocarbons.


Author(s):  
D. N. Ogbonna ◽  
S. I. Douglas ◽  
V. G. Awari

Many substances known to have toxic properties are regularly introduced into the environment through human activity. These substances which include hydrocarbons range in degree of toxicity and danger to human health. Frequent oil spills incidents have become a problem to ecological protection efforts. Conventional methods to remove, reduce or mitigate toxic substances introduced into soil via anthropogenic activities suffer setbacks due to the level of risk involved but bioremediation offers an alternative method to detoxify contaminants especially if the soil conditions are amended with organic nutrients or growth enhancing co-substrates. This study was therefore aimed characterizing hydrocarbon utilizing microorganisms associated with crude oil contaminated soils. Soils were obtained from the Rivers State University Agricultural farm contaminated deliberately with crude oil and allowed for 21 days to mimic the natural polluted soil. Sample collection and analyses were carried out according to standard microbiological procedures while characterization of the isolates was done using genomic studies. The results of microbial counts obtained from the soil samples for total heterotrophic bacteria ranged from 2.10 x108 to 2.58 x108 cfu/g, Total heterotrophic fungi had 1.6 x105 to 2.0 x105 cfu/g while the hydrocarbon utilizing bacteria ranged from 8.0 x103 to 5.0 x104 cfu/g and total hydrocarbon utilizing fungi ranged from 9.0 x103 to 7.0 x104 cfu/g in the contaminated soil. Five hydrocarbon utilizing bacterial species were identified as Staphylococcus saprophyticus, Bacillus amyloliquefaciens, Pseudomonas aeruginosa, Comamonas testosteroni and Chryseobacterium cucumeris while five hydrocarbon utilizing fungal species were identified as Penicillium citrinum, Penicillium brocae, Fusarium solani, Kodamaea ohmeri and Lentinus squarrosulus. Bacillus and Penicillium species were predominantly isolated from the soil. This may be due to the ability of the organisms to produce spores, which may shield them from the toxic effects of the hydrocarbons. Since these organisms are able to utilize crude oil as their sole carbon source. Hence, can be used for bioremediation of crude oil polluted environment.


Sign in / Sign up

Export Citation Format

Share Document