scholarly journals The Twin Physics Interpretation of Gravitational Waves

2017 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Anna C.M. Backerra

Gravitational waves may originate in two approaching black holes, circling around each other until they merge together. This phenomenon is considered by using twin physics, based upon a complementary mathematical language, after fitting Einstein’s idea about the relationship between time and space into it. According to the description obtained, the two black holes are annihilated as soon as they touch each other; only after a rearrangement of the constituent Heisenberg-units, these being units of potential energy, one new black hole is generated. During this rearrangement, a pair of oppositely charged particles appears, which is considered to be the birth of electromagnetism. This occurs during a period of time which is principally too short to measure, which seems to be the reason for the apparent merging of the black holes. The expectation is that extraordinarily large signals will be repeatedly received, related to a chain of annihilations of black solid particle pairs and subsequent generations of single black solid particles. We suppose that these signals represent gravitational waves.

2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2018 ◽  
Vol 191 ◽  
pp. 07003
Author(s):  
Xavier Calmet ◽  
Boris Latosh

We show that alongside the already observed gravitational waves, quantum gravity predicts the existence of two additional massive classical fields and thus two new massive waves. We set a limit on their masses using data from Eöt-Wash-like experiments. We point out that the existence of these new states is a model independent prediction of quantum gravity. We explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.


2021 ◽  
pp. 2150200
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Lasha Pantskhava

In this paper, a brief analysis of repeated and overlapped gamma-ray bursts, fast radio bursts and gravitational waves is done. These signals may not be emitted by isolated cataclysmic events and we suggest interpreting some of them within the impenetrable black hole model, as the radiation reflected and amplified by the black hole horizons.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


Author(s):  
Katherine Blundell

Mathematics is the perfect language needed for describing how the theory of relativity applies to the physical Universe and all of spacetime, and that description includes the strange behaviour that occurs near black holes. ‘Navigating through spacetime’ explains some of the complicated mathematical language using spacetime diagrams. It describes world-lines—the path left behind as an object journeys through spacetime—and light cones. Black holes profoundly affect the orientations of the light cones. As a particle approaches a black hole, its future light cone tilts more and more towards the black hole. When the particle crosses the event horizon, all of its possible future trajectories end inside the black hole.


1996 ◽  
Vol 05 (06) ◽  
pp. 707-721 ◽  
Author(s):  
I. YA. AREF’EVA ◽  
I.V. VOLOVICH ◽  
K.S. VISWANATHAN

In a series of papers Amati, Ciafaloni and Veneziano and ’t Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this talk based on [10] we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves.


2011 ◽  
Vol 03 ◽  
pp. 408-416
Author(s):  
H. P. DE OLIVEIRA ◽  
E. L. RODRIGUES

We analyze the non-frontal collisions of two Schwarzschild black holes in the realm of general Robinson-Trautman spacetimes using a numerical code based on spectral methods. In this process, two black holes collide and form a single black hole while a certain amount of the initial mass is carried away by gravitational waves. We determined the forms of the gravitational waves and the efficiency of this process for frontal and non-frontal collisions. We found numerical evidence that the distribution of mass qloss can be described by a function typically used in nonextensive statistics.


2014 ◽  
Vol 92 (6) ◽  
pp. 497-503 ◽  
Author(s):  
M. Sharif ◽  
Nida Haider

This paper is devoted to study the acceleration and collision of charged particles in a general regular space–time. Using angular momentum, energy, and components of four-velocity, we explore the effect of charged particles on the center of mass energy. It is found that the collision energy of charged particles (independent of both singularity as well as horizon) is greater than that of uncharged particles. This depends not only on the mass to charge ratio of the black hole but also on the charge of the particle. Finally, we evaluate the collision energy of charged particles for a regular black hole, a particular example.


Sign in / Sign up

Export Citation Format

Share Document