scholarly journals Geo Polymerization of Kaolin and Metakaolin Incorporating NaOH and High Calcium Ash

2016 ◽  
Vol 5 (1) ◽  
pp. 67
Author(s):  
Nafeth Abdel Rahman Abdel Hadi

<p><span lang="EN-GB">This research work aims to investigate the possibility to produce Ordinary Portland Cement free construction materials depending on the reactivity of high alkali liquids or solids with rich silica-alumina clay through geo polymerization process. Different mixtures of kaolin, metakaolin, bituminous limestone ash and NaOH were prepared and molded with different ratios. Standard cylindrical samples were prepared from each mixture and cured at ambient laboratory temperature for 28 days to investigate their physical and mechanical properties.</span></p><p><span lang="EN-GB">The unconfined compressive strength results of Kaolin-NaOH mixtures have ranged from 19 to 30 kg/cm<sup>2</sup> after 24 hours. The unconfined compressive strength results of kaolin ash mixtures have ranged from 23 to 36 kg/cm<sup>2</sup> at 28 days. The unconfined compressive strength results of ash-metakaolin mixtures have ranged from 32 to 56 kg/cm<sup>2</sup> at 28 days.</span></p><p class="zhengwen"><span lang="EN-GB">Kaolin-NaOH samples revealed various degrees of efflorescence when subjected to wetting and drying conditions, on the other hand, ash –kaolin samples showed efflorescence free surfaces and increasing of strength with increasing the curing time.</span></p>

2008 ◽  
Vol 587-588 ◽  
pp. 908-912 ◽  
Author(s):  
Rute Eires ◽  
Aires Camões ◽  
Saíd Jalali

The sustainable world’s economic growth and people’s life improvement greatly depend on the use of alternative products in the architecture and construction, such as industrial wastes conventionally called “green materials”. This paper concerns the main results of an experimental work carried out with the objective of developing new composite materials based on gypsum and incorporating waste material as granulated cork, a by-product of cork industry, and cellulose fibres, a waste of paper industry. Such materials are intended to be used as composite boards for non structural elements of construction, such as dry walls and ceiling. Cork (bark of the plant Quercus Suber L), a substance largely produced in Portugal, is a material whose characteristics are of considerable interest for the construction industry. It is regarded as a strategic material with enormous potential by its reduced density, elasticity, compressibility, waterproof, vibration absorption, thermal and acoustic insulation efficiency [1]. During the first stage of this research work the gypsum binder and its properties were studied. Then, composites with mineral additions (added to increase the waterproofing and resistance) were also developed and submitted to tests to determine their physical and mechanical properties. In last stage, reinforced composites using different industrial by-products have been developed. This paper will present the properties and the manufacture methods used to produce the above mentioned eco-friendly composites that can ease ways for using industrial wastes as new construction materials, with excellent inherent thermal and acoustic properties.


2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2019 ◽  
pp. 205-214
Author(s):  
Ikumapayi C. M. ◽  
Adeniji A. A. ◽  
Obisesan A. A. ◽  
Odeyemi O. ◽  
Ajayi J. A.

Concrete is one of the reliable, durable, economical and acceptable construction materials among the building and construction stakeholders worldwide. Performance of concrete could be threatened especially reinforced concrete by some processes such as corrosion, sulfate attack among others. Corrosion of reinforcement in reinforced concrete can be induced by carbonation process. Even though carbonation initiates corrosion, it has been gathered that carbonation could still be of immense benefits to building and construction industries if its mechanism of operation is understudied. This research work has therefore investigated the effect of carbonation on some selected mechanical properties of concrete such as compressive strength, flexural strength, water absorption and weight changes. Concrete cubes and beams of M15 grade with 0.5 % water-cement ratio were prepared and subjected to accelerated carbonation. Their compressive strength, flexural strength, water absorption and weight changes were determined in accordance with the relevant standards. The outcomes show that carbonation improves all the mechanical properties investigated. The use of carbonation can be positively explored in reinforced concrete provided there is adequate nominal cover.


2021 ◽  
Vol 36 (2) ◽  
pp. 182-191
Author(s):  
Ljiljana Kljajevic ◽  
Miljana Mirkovic ◽  
Sabina Dolenec ◽  
Katarina Ster ◽  
Mustafa Hadzalic ◽  
...  

The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milici, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.


2020 ◽  
Vol 12 (4) ◽  
pp. 1379 ◽  
Author(s):  
Marzouk Mohamed Aly Abdelhamid ◽  
Dong Li ◽  
Gaofeng Ren

Carbonate building materials and engineering constructions are exposed to severe seasonal environmental fluctuations and result in a full or partial disintegration, especially in cold regions, and employment of nondestructive methods for evaluating the durability of building materials subject to frost weathering is gaining great significance. This research aims to obtain reliable relationships between unconfined compressive strength decrease and nondestructive parameters variations of limestone types under frost conditions and provide useful information regarding their durability in order to ensure the long-term viability or sustainability of these materials used for constructions against frost conditions. In this study, five important types of Chinese limestone used as construction materials were subjected to 50 frost cycles. Unconfined compressive strength, compressional wave velocity and spatial attenuation, and porosity were obtained at the end of every 10 cycles. As a result of progression in frost cycles, the increase and decrease rates were determined at the end of every 10 cycles, and the relationships between them were obtained to predict the loss ratios of unconfined compressive strength (RDσc). Results indicated that at the end of 40th cycles, there was a high correlation between RDσc and spatial attenuation loss with an R2 of 0.8584. Furthermore, there was also a strong relationship between RDσc and compressional wave velocity decrease after the end of 20th and 50th cycles with an R2 of 0.9089 and 0.9025, respectively. Therefore, these relations are reliable to provide useful information for durability and viability of studied samples under frost conditions and support the use of the ultrasonic measurements. It can also be successfully used for pre-estimation of unconfined compressive strength loss of studied limestone types against frost weathering without any tests.


2021 ◽  
Vol 36 (2) ◽  
pp. 182-191
Author(s):  
Ljiljana Kljajevic ◽  
Miljana Mirkovic ◽  
Sabina Dolenec ◽  
Katarina Ster ◽  
Mustafa Hadzalic ◽  
...  

The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milici, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.


2012 ◽  
Vol 2 (6) ◽  
pp. 315-319 ◽  
Author(s):  
F. A. Olutoge ◽  
H. A. Quadri ◽  
O. S. Olafusi

Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA) is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA) as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete, at lower volume of replacement, will enhance the reduction of cement usage in concretes, thereby reducing the production cost. This research was carried out at the University of Ibadan, Ibadan, Nigeria.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012066
Author(s):  
Cheng Shi ◽  
Jinghu Ding ◽  
Junjie Chen ◽  
Fangzhou Chu

Abstract Cemented soil fill is a new backfilling technology developed for the problems of narrow foundation trenches and uncompacted backfilling. It has good fluidity before solidification and higher strength and stiffness after solidification. This type of fill materials makes full use of the waste soils. The proportioning test was carried out on excavated soil on a construction site. Liquid property tests and unconfined compressive strength tests was carried out. The results show that the cemented soil fill can meet the requirement of foundation trenches backfilling, which has great prospect for future applications.


2021 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Yang Zhao ◽  
Qian Wang ◽  
Mengnan Yuan ◽  
Xi Chen ◽  
Zhiyang Xiao ◽  
...  

Microbial-induced calcium carbonate precipitation (MICP) is a new soil remediation technology, which can improve the physical and mechanical properties of soil by transporting bacterial solution and cementation solution to loose soil and precipitating calcium carbonate precipitation between soil particles through microbial mineralization. Based on this technique, the effects of different fine particle content and pore ratio on the physical and chemical properties of silt after reinforcement were studied. The content of calcium carbonate, the ability of silt to fixed bacteria, unconfined compressive strength (UCS), permeability coefficient and microstructure of the samples were determined. The results showed the following: In the process of calcium carbonate precipitation induced by microorganisms, more than 50% bacterial suspension remained on the surface of silt particles and their pores. The higher the bacterial fixation rate of silt, the more CaCO3 was generated during the solidification process. The bacterial fixation rate and CaCO3 content both decreased with the increase in the pore ratio and increased with the increase in the fine particle content. XRD and SEM images show that the calcium carbonate is mainly composed of spherical vaterite and acicular cluster aragonite. There is an obvious correlation between unconfined compressive strength and CaCO3 content of silt. When CaCO3 content accumulates to a certain extent, its strength will be significantly improved. The unconfined compressive strength of silt A with pore ratio of 0.75 and fine particle content of 75% is 2.22 MPa when the single injection amount of cementing fluid is 300 mL. The permeability coefficient of cured silt can be reduced by 1 to 4 orders of magnitude compared with that of untreated silt. In particular, the permeability of MICP-treated silt A is almost impermeable.


2018 ◽  
Vol 931 ◽  
pp. 475-480 ◽  
Author(s):  
Nikolay V. Lyubomirskiy ◽  
Stanisław Fic ◽  
Sergey I. Fedorkin

A technique for determining the modulus of elasticity of сonstruction materials on samples of small dimensions has been developed. Physical and mechanical properties of building materials based on calcareous-lime compositions of semi-dry pressing, hardening according to the principle of forced carbonization, depending on the prescription and technological factors of their production have been studied. It has been demonstrated that on the basis of these materials it is possible to obtain building products with compressive strength up to 30 MPa, tensile strength at bending up to 5 MPa and higher, and an elastic modulus up to 18 GPa.


Sign in / Sign up

Export Citation Format

Share Document