scholarly journals Physical and Mechanical Properties of Cemented Soil Fill At Liquid and Hardened States

2022 ◽  
Vol 2148 (1) ◽  
pp. 012066
Author(s):  
Cheng Shi ◽  
Jinghu Ding ◽  
Junjie Chen ◽  
Fangzhou Chu

Abstract Cemented soil fill is a new backfilling technology developed for the problems of narrow foundation trenches and uncompacted backfilling. It has good fluidity before solidification and higher strength and stiffness after solidification. This type of fill materials makes full use of the waste soils. The proportioning test was carried out on excavated soil on a construction site. Liquid property tests and unconfined compressive strength tests was carried out. The results show that the cemented soil fill can meet the requirement of foundation trenches backfilling, which has great prospect for future applications.

2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Mehdi Jalili ◽  
Mohmad Reza Ghasemi ◽  
Ali Reza Pifloush

In some parts of the world mechanical properties of problematic soils are not suitable for construction purposes. Today, regard to the importance of the soil improvement; by considering methods with more concordance with the environmental mechanisms in the nature, and with study and combination of geotechnical science, microbiology and geochemistry; researchers try to provide a suitable way to improve the physical and mechanical properties of the problematic soils. In this paper, the effect of the aerobic microorganisms of Sporosarsina Pasteurii (PTCC 1645), as a producer of Urease for the sedimentation of calcium carbonate and improvement of granular soil of Garmsar Industrial Town is evaluated experimentally in order to check the effects of this phenomena on the shear strength and stiffness of the granular soils. The results of the uniaxial compressive strength tests show the effect of adding the above mentioned microbial solution to the soils, in case of increased uniaxial compressive strength and stiffness of the soil. It should be mentioned that the granular soils have no compressive strength, naturally but after bio cementation the samples got notable values.


2013 ◽  
Vol 380-384 ◽  
pp. 4387-4390 ◽  
Author(s):  
Cun Yuan Mu ◽  
Bo Feng ◽  
Ming Ge Sui ◽  
An Min Wang

The conservation status of the railway turnout junctions were analyzed, the hardness, density, compressive strength tests of snow squeezed by railway turnout junctions were studied, thus reaching a conclusion that different quality of snow owns different hardness and densities. For new snow ( or loose snow) whose density ρ = 0.3g/cm2, snow compressive strength is small; when the compacted snow density ρ > 0.3g/cm2, the regulation of snow compressive strength should be the snow compressive strength improve with decreasing temperature, while the denser the snow density is and the lower ambient temperature is, the faster the snow increase compressive strength. All these provided the snow quality parameters for the design of railway turnout junction snow cleaning machines and tools.


2018 ◽  
Vol 13 (s1) ◽  
pp. 127-134
Author(s):  
Hyginus E. Opara ◽  
Uchechi G. Eziefula ◽  
Bennett I. Eziefula

Abstract This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Qiang Wang ◽  
Jinyang Cui

Cement solidification/stabilization is a commonly used method for the remediation of contaminated soils. The stability characteristics of solidified/stabilized contaminated soils under freeze-thaw cycle are very important. A series of tests, which include unconfined compressive strength tests, freeze-thaw cycle tests, and scanning electron microscopy (SEM) tests, are performed to study the variation law of strength characteristics and microstructure. It aims at revealing the microcosmic mechanism of solidified/stabilized Pb2+ contaminated soils with cement under freeze-thaw cycle. The results show that the unconfined compressive strength of the contaminated soils significantly improved with the increase of the cement content. The unconfined compressive strength of stabilized contaminated soils first increases with the increase of times of freeze-thaw cycle, and after reaching the peak, it decreases with the increase of times of freeze-thaw cycle. The results of the scanning electron microscopy tests are consistent with those of the unconfined compressive strength tests. This paper also reveals the microcosmic mechanism of the changes in engineering of the stabilized contaminated soils under freeze-thaw cycle.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247599
Author(s):  
Yingjun Jiang ◽  
Jiangtao Fan ◽  
Yong Yi ◽  
Tian Tian ◽  
Kejia Yuan ◽  
...  

The vertical vibration compaction method (VVCM), heavy compaction method and static pressure method were used to form phyllite specimens with different degrees of weathering. The influence of cement content, compactness, and compaction method on the mechanical properties of phyllite was studied. The mechanical properties of phyllite was evaluated in terms of unconfined compressive strength (Rc) and modulus of resilience (Ec). Further, test roads were paved along an expressway in China to demonstrate the feasibility of the highly weathered phyllite improvement technology. Results show that unweathered phyllite can be used as subgrade filler. In spite of increasing compactness, phyllite with a higher degree of weathering cannot meet the requirements for subgrade filler. With increasing cement content, Rc and Ec of the improved phyllite increases linearly. Rc and Ec increase by at least 15% and 17%, respectively, for every 1% increase in cement content and by at least 10% and 6%, respectively, for every 1% increase in compactness. The higher the degree of weathering of phyllite, the greater the degree of improvement of its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document