scholarly journals Farmer Knowledge of Climate Change Impacts and Adaptation Strategies in the Management of Vegetable Insect Pests in Zimbabwe

2017 ◽  
Vol 9 (12) ◽  
pp. 194
Author(s):  
Rumbidzai Debra Katsaruware-Chapoto ◽  
Paramu L. Mafongoya ◽  
Augustine Gubba

Farmer knowledge of insect pests’ risks in a changing climate is important in managing insect pests’ incidence. A total of 250 vegetable farmers from 5 wards in Zimbabwe were sampled using a semi-structured questionnaire to assess their knowledge on climate change risk, its impact on vegetable insects pests and management strategies to reduce the increased incidence of insect pests. Focus group discussions, key informant interviews and field observations were also used. Droughts and elevated temperatures were perceived to have the greatest impact on vegetable insect pests resulting in their increased incidence. Aphids, cutworms and whiteflies were identified among the major pests that have increased. The majority (53%) of the farmers cited high vegetable losses from insect pests attack. All the respondents (100%) revealed the use of chemical insecticides during production of vegetables. A higher proportion (60%) perceived effective control, 34% perceived reduced efficacy and 6% were not sure of effectiveness of chemical insecticides. Management strategies to cope with the increasing insect pests and diseases on vegetable production also included planting insect resistant cultivars, certified seeds, increased frequency of application of synthetic insecticides, insecticide mixtures, use of more hazardous chemical insecticides and increasing the rates of application resulting in insecticide overuse. There is need for government to facilitate development and adoption of Integrated Insect Pest Management (IIPM) and raise awareness on avoiding overdependence on chemical insecticides. Modelling tools that support adaptation planning needs to be developed to forecast climate change risk and the resultant incidence of insect pests.

2020 ◽  

This specially curated collection features three reviews of current and key research on climate change, insect pests and invasive species. The first chapter reviews the impact of climate change on insect pests and how it has affected insect pest development and population dynamics, activity and abundance, diversity and geographical distribution. It also assesses insect-host plant interactions and the effectiveness of crop pest management techniques. The second chapter discusses the literature on the potential impact of climate change on the principal insect pests of wheat, including cereal aphids, Hessian fly, orange wheat blossom midge, cereal leaf beetle and cotton bollworm. It assesses the different methods used to assess likely impacts as well climate change effects on biological control in wheat systems. The final chapter surveys what we know about the ecology of invasive species and potential management strategies. In particular, it assesses how integrated pest management (IPM) needs to evolve to deal with invasive species, particularly in focussing more on monitoring, prevention and rapid response.


2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2020 ◽  
Vol 113 (5) ◽  
pp. 2061-2068
Author(s):  
Jia-Wei Tay ◽  
Dong-Hwan Choe ◽  
Ashok Mulchandani ◽  
Michael K Rust

Abstract Here, we review the literature on the development and application of hydrogel compounds for insect pest management. Researchers have used hydrogel compounds for the past few decades to achieve the controlled release of various contact insecticides, but in recent years, hydrogel compounds have also been used to absorb and deliver targeted concentrations of toxicants within a liquid bait to manage insect pests. The highly absorbent hydrogel acts as a controlled-release formulation that keeps the liquid bait available and palatable to the target pests. This review discusses the use of various types of hydrogel compounds in pest management based on different environmental settings (e.g., agricultural, urban, and natural areas), pest systems (e.g., different taxa), and modes of insecticide delivery (e.g., spray vs bait). Due to their unique physicochemical properties, hydrogel compounds have great potential to be developed into new and efficacious pest management strategies with minimal environmental impact. We will also discuss the future research and development of hydrogels in this review.


Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27 ◽  
Author(s):  
Mutondwa Masindi Phophi ◽  
Paramu Mafongoya ◽  
Shenelle Lottering

Vegetable production is a source of income for smallholder farmers in Limpopo Province, South Africa. Vegetable production is constrained by the negative impacts of climate change and pests. This study assessed farmers’ awareness of climate change, farmers’ knowledge of insect pests and factors that influence insect pests’ prevalence. The data were collected using quantitative and qualitative methods. The data were subjected to descriptive and bivariate analysis. About 84.5% of smallholder farmers were aware of climate change. Late rainfall (24.4%), long dry spells (15%) and increased drought frequency (19.4%) were highlighted as dominant indicators of climate change by farmers. Aphids (22.2%), Bagrada hilaris (12.5%) and Spodoptera frugiperda (10.2%) were the most prevalent insect pests within the Vhembe District. Warmer winters, dry spells and high temperatures were perceived by farmers to influence insect pests’ prevalence within the district. It can be concluded that farmers are aware of climate change and climatic factors influencing pest prevalence within the district. Pest risk maps are needed to improve the preparedness of the government and farmers in controlling insect pests under changing climates.


2020 ◽  
Vol 12 (10) ◽  
pp. 4032 ◽  
Author(s):  
Youngeun Kang ◽  
Keonhyeong Kim ◽  
Jeahyun Jung ◽  
Seungwoo Son ◽  
Eujin-Julia Kim

Research on the risks of climate change to urban regeneration projects has been insufficient to date. Therefore, this study aims to compare and analyze the degree of risk of climate change impact on areas with and without urban regeneration projects (for Eup, Myeon, and Dong regional units) in Busan, South Korea. In this study, (1) climate change risk indicators were extracted based on the concept of risk (hazard, vulnerability, and exposure), (2) a spatial analysis was performed using a graphic information system (GIS), and (3) the primary influencing factors were derived through a logistic regression analysis. The principal results show that urban regeneration areas have a higher risk of climate change impact than other areas. The results indicate that urban regeneration areas have a higher population density per area and more impermeable or flooded areas can increase the risk of climate change impacts. We also discuss strategies to develop resilient cities and climate change adaptation policies for future urban regeneration projects.


2016 ◽  
Vol 8 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Seth P. Tuler ◽  
Thomas Webler ◽  
Jason L. Rhoades

Abstract Numerous decision support tools have been developed to assist stormwater managers to understand future scenarios and devise management strategies. This paper presents one such tool, the Vulnerability, Consequences, and Adaptation Planning Scenarios (VCAPS) process, and reports on experiences from its deployment in 10 coastal communities on the Atlantic and Gulf coasts. VCAPS helps to elucidate local complexities, couplings, and contextual nuance through dialogue among technical experts and those with detailed contextual knowledge of a community. Participants in the process develop qualitative scenarios of climate change impacts and how different management strategies may prevent or mitigate undesirable consequences. The scenarios help stormwater managers diagnose potential problems that may emerge from climate change and variability, which can then be subject to further detailed analysis. The authors describe five challenges faced by stormwater managers and how insights that emerge from scenario-based processes like VCAPS can help address them: characterizing the implications of interacting climate stressors that originate stormwater, bringing all available expertise and local knowledge to bear on the problem of stormwater management, integrating local and scientific information about coupled human–environment systems, identifying management actions and their trade-offs, and facilitating planning for sustained coordination among multiple public and private entities.


2021 ◽  
Vol 17 ◽  
Author(s):  
Sarah Mansfield ◽  
Colin Ferguson ◽  
Philippa Gerard ◽  
David Hodges ◽  
John Kean ◽  
...  

It is well understood that damage by insect pests can have serious consequences for pasture resilience. However, the impacts of climate change on pastoral systems, the responses of insect pests, and implications for pest impact mitigation are unclear. This paper reviews pest responses to climate change, including direct impacts such as temperature and carbon dioxide levels, geographic range expansion, sleeper pests, and outbreaks resulting from disturbance such as drought and farm system changes. The paper concludes with a plea for transdisciplinary research into pasture resilience under climate change that has insect pests as an integral component – not as an afterthought.


Author(s):  
Xiong Peng ◽  
Lang Liu ◽  
Xin Guo ◽  
Peilei Wang ◽  
Chunman Song ◽  
...  

Abstract Rhopalosiphum padi (L.) is one of the most economically important pests of wheat worldwide; however, the host ranges of R. padi remain unclear. Particularly, it is unknown which plants R. padi can survive and reproduce on after the harvest of crops. The results revealed that the survival, developmental times, longevity, and fecundity of the aphid varied among the 13 Gramineae weeds, with the life-history parameters significantly differing. The virginoparae could survive long-term and reproduce on 11 of the 13 weeds. Gramineae weeds can possibly play a significant role in the buildup of R. padi populations as reservoirs. The virginoparae could survive long term and reproduce on Iris lactea Pall. var. chinensis (Fisch.) Koidz (Liliflorae: Iridaceae), Iris tectorum Maxim. (Liliflorae: Iridaceae), Cyperus rotundus L. (Cyperales: Cyperaceae), and Brassica oleracea L. var. capitata (Rhoeadales: Cruciferae), but not on Fagopyrum esculentum Moench (Polygonales: Polygonaceae), F. tataricum (L.) Gaertn. (Polygonales: Polygonaceae), Chlorophytum comosum (Thunb.) Baker (Liliflorae: Liliaceae), and Ophiopogon japonicas (Thunb.) Ker-Gawl (Liliflorae: Liliaceae). Rhopalosiphum padi can survive and reproduce on non-Gramineae plants of different families. Detailed host range information would be helpful for more effective control of insect pests. The design and implementation of sustainable pest management strategies should consider the aphid population on weeds and other host plants.


Sign in / Sign up

Export Citation Format

Share Document