scholarly journals Optimization of Horizontal Well Direction and Length Considering Geomechanics Properties and Drainage Area Using Genetic Algorithm in A Gas Field

2017 ◽  
Vol 11 (9) ◽  
pp. 114
Author(s):  
Prasandi Abdul Aziz ◽  
Tutuka Ariadji

To maximize a horizontal well production, we need to determine the optimum direction and horizontal well length that maximizes the gas field recovery for a certain constant flow rate called by plateau rate. This problem is conventionally solved by using a reservoir simulation model and trial and error procedure that consumes considerably a lot of time and efforts. This study uses a random search method, i.e., Genetic Algorithm (GA), to solve this optimization problem and it very much eases to find the best well location with less time and efforts consumed.Along the general technique in directing a horizontal well towards the least principal stress of rocks, this study considers the geomechanics effects that influence the gas production performance. And also, the drainage area of horizontal well will be considered in this study to obtain the optimum horizontal well direction and length. In order to do this, a new proposed objective function for the GA has been constructed based on basic reservoir properties (i.e., porosity, permeability and gas saturation) and geomechanics properties (i.e., Young’s modulus and Poisson’s ratio). The results of the proposed method are validated using a reservoir model and economics evaluation.It may be concluded that the applying GA, with the appropriate objective function, can give accurate and faster results compared with the trial and error method using reservoir simulator, technically and economically, and also the proposed method is able to reduce the amount of works considerably time.

Author(s):  
Jeroen van der Molen ◽  
Elisabeth Peters ◽  
Farid Jedari-Eyvazi ◽  
Serge F. van Gessel

Abstract The decline of domestic natural gas production, increasing dependency on gas imports and lagging development of renewable energy production may pose serious challenges to the current high standards of secure energy supply in the Netherlands. This paper examines synergy between hydrocarbon- and geothermal exploitation as a means to reinforce energy security. The Roden gas field is used as an example to demonstrate potential delay of water breakthrough in the gas well and a resulting increase of recovered gas (up to 19%), by positioning of a geothermal doublet in the water leg of the gas field. The reservoir simulations show that the total increase of gas production primarily depends on the amount of aquifer support. An optimal configuration of gas- and geothermal wells is key to maximise gas recovery and strongly depends on the distribution of reservoir properties. The study also reveals that this option can still be beneficial for gas fields in a late stage of production. Net Present Value calculations show that the added value from the geothermal doublet on total gas production could lead to an early repayment of initial investments in the geothermal project, thereby reducing the overall financial risk. If no subsidies are taken into account, the additional profits can also be used to finance the geothermal project up to break-even level within 15 years. However, this comes with a cost as the additional profits from improved gas recovery are significantly reduced.


2021 ◽  
Author(s):  
Ahmed Zarroug El Sedeq ◽  
Neal Hughes ◽  
Tore Oian ◽  
Piotr Byrski ◽  
Jean-Michel Denichou ◽  
...  

Abstract Dvalin field, discovered in 2010-2012. The location of this field is in the Norwegian Sea, as shown in (Figure 1). Dvalin field is an HPHT gas field in Middle Jurassic sandstone in the Garn and Ile Formations – the former being homogeneous with better reservoir properties, during the later heterogenous with low quality. (DVALIN, 2020) The well 6507/7-Z-2 H objective is to produce hydrocarbons from the Jurassic reservoir section of the Dvalin field safely and cost-effectively. The well was planned to be drilled near vertical in the reservoir section and TD'ed at a maximum depth corresponding to the Garn Formation base. After the productivity results from Z-3-H well came in at the low end of expectations, it was evaluated and decided to change the well profile of the Z-2-H well from vertical reservoir penetration to a horizontal profile; to have two penetrations with a minimum of 150m MD separation in the upper high permeable streak and then drop to penetrate lower high permeable streak. This decision was conducted only three days before starting the 17.5-inch section on the subject well. One Team culture was the key to achieving this significant change successfully. The decision to change the well-profile was conducted after a thorough engineering evaluation, including offset well analysis, which was very limited as the closest horizontal well was more than 40 km away. As the well was not planned as a horizontal well, departure between the surface location and Target Easting & Northing was minimal. Therefore, a high turn and deeper inclination build were required, which added some complexity to the well design. One of the additional primary risks related to this change of trajectory design is deploying a more complex BHA design in the reservoir section with a full suite of LWD technologies run in an HT environment. In the planning phase, special consideration was needed to accurately simulate the expected circulating temperature and have proper procedures in place for temperature management and control. Being the first horizontal well in the field, thus detailed planning was key for successful execution. Ultra-Deep Azimuthal Resistivity Tool (UDAR) Reservoir-Mapping capability was considered to help optimize the landing and navigate within the reservoir section. A feasibility study was conducted, and a 2-receiver Ultra Deep Azimuthal Resistivity Tool BHA configuration was selected and deployed. During the execution, the Ultra Deep Azimuthal Resistivity Tool real-time inversion mapped the reservoir geometry, revealing resistive layers within the Garn formation, thereby facilitating optimal placement of the well to achieve the set objectives. The well execution was largely considered flawless, with the real-time Ultra Deep Azimuthal Resistivity Tool data and corresponding interpretations facilitating decisions.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yue Peng ◽  
Tao Li ◽  
Yuxue Zhang ◽  
Yongjie Han ◽  
Dan Wu ◽  
...  

Abstract Multifractured horizontal wells are widely used in the development of tight gas reservoirs to improve the gas production and the ultimate reservoir recovery. Based on the heterogeneity characteristics of the tight gas reservoir, the homogeneous scheme and four typical heterogeneous schemes were established to simulate the production of a multifractured horizontal well. The seepage characteristics and production performance of different schemes were compared and analyzed in detail by the analysis of streamline distribution, pressure distribution, and production data. In addition, the effects of reservoir permeability level, length of horizontal well, and fracture half-length on the gas reservoir recovery were discussed. Results show that the reservoir permeability of the unfractured areas, which are located at both ends of the multifractured horizontal well, determines the seepage ability of the reservoir matrix, showing a significant impact on the long-term gas production. High reservoir permeability level, long horizontal well length, and long fracture half-length can mitigate the negative influence of heterogeneity on the gas production. Our research can provide some guidance for the layout of multifractured horizontal wells and fracturing design in heterogeneous tight gas reservoirs.


Author(s):  
M. Lubkov ◽  
O. Zaharchuk

Nowadays there are important problems of increasing efficiency of development and exploitation of gas deposits. There are problems associated with the growth of gas production in heterogeneous anisotropic reservoirs, increasing gas recovery, achieving economic efficiency and so on. In this situation, there are popular methods of computer modeling of gas productive reservoirs, because they allow getting information of the structure and characteristics of the gas reservoir, the distribution parameters of permeability and other important factors in it. They also allow evaluating and calculating uncertainty arising from the lack of information about the gas reservoir properties outside the well. Currently there are many methods of computer modeling, allowing solving various practical problems. From another hand there are some problems related to the accuracy and adequacy of simulation of heterogeneous anisotropic permeable collector systems in real conditions of gas deposits exploitation. On the base of combined finite-element-difference method for solving the nonstationary anisotropic piezoconductivity Lebenson problem, with calculating of heterogeneous distribution of permeable characteristics of the gas reservoir, we carried out modeling of filtration processes between production and injection wells. The results of computer modeling show that intensity of the filtration process between production and injection wells depends essentially on their location both in a shifting-isotropic and anisotropic gas reservoir. Therefore, for the effective using of poorly permeable shifting-isotropic gas-bearing reservoirs, it is necessary to place production and injection wells along the main anisotropy axes of the gas-bearing layers. At the placing production and injection well systems in low-permeable anisotropic reservoirs of a gas field, the most effective exchange between them will take place when the direction of increased permeability of the reservoirs coincides with the direction of the location of the wells. Obviously, the best conditions for gas production processes in any practical case can be achieved due to optimal selection of all anisotropic filtration parameters of the gas reservoir. One can use obtained results for practical geophysical works with a purpose optimizing of gas production activity in low-permeable heterogeneous anisotropic reservoirs. Presented method for more detailed investigation of low-permeable heterogeneous anisotropic gas-bearing deposits can be used.


2021 ◽  
Author(s):  
Li Ming ◽  
Xia Zhaohui ◽  
Liu Lingli ◽  
Cui Zehong ◽  
Duan LiJiang ◽  
...  

Abstract The Coalbed Methane in Australia Surat Basin is main gas source for LNG project in east coast of Australia[1]. Traditionally, Coalbed Methane are drilled by vertical wells. But there are big intensively farmed land coverage in the Surat Basin, the multiple wells on single, larger pad from the surface, the bores slant away at around 70 degrees to intersect multiple, thin coal seams are applied to avoid the extra "footprint" and decrease the environment affect. Many pad wells production failure because of poor interburden isolation. Excessive solids production in pad wells resulted in new failures of holes in tubing due to accelerated erosion, which bring big challenges for the Coalbed methane production in deviated pad wells. The gas production in pad wells are analysised and the new pad wells optimization are proposed. First, the complete wire log (at least include GR and density log curves) need to acquire for correct thin coal seams correlation and locate the interburden sandstone position for future good sandstone isolation. Second the customized completion strategy and placement (swell packer) are applied in the pad wells and specialized tubing with enhanced erosion resistance to extend the run life. Thirdly ESP pumps and optimized tubing are installed in new deviated wells for good gas production. After the pad wells were put into production, the gas production was kept well for long time without pump problems. Swell able packer completion significantly eliminates sand problem by isolating in excess of or close to 80% of interburden sand. The above well completion and artificial lift optimization methods bring good production performance for the new pad wells and contribute much production for the producing gas field. The swellable packer completion also can be used in vertical wells and will be standard well completion methods for future gas development wells.


GeoArabia ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 181-220
Author(s):  
David S. Mackertich ◽  
Adnan I. Samarrai

ABSTRACT The Kurdistan Region of Iraq has witnessed extraordinary levels of exploration activity since the first exploration well to be drilled in over two decades was spudded in 2005. Since then almost 200 wells have been drilled encountering recoverable reserves estimated to be in excess of 15 billion barrels of oil equivalent. Whilst the region is in close proximity to many of the giant and supergiant fields of Iran and Iraq, the reservoirs in which discoveries have been made are largely different. In Iraq a large percentage of discovered reserves reside in Cenozoic and Cretaceous sediments capped by Cenozoic evaporite sequences. Over much of Kurdistan, particularly the north and northeastern parts of the region, Cenozoic strata are absent. A decade ago many were doubtful that significant quantities of hydrocarbons could be trapped in the absence of the Cenozoic evaporite sequences. Furthermore, whilst the presence of large surface structures and significant oil seeps were encouraging to some, to others it fueled concerns about trap leakage. Today the majority of the surface anticlinal features in Kurdistan have been drilled, but remain to be fully evaluated. Almost all of the exploration activity in Kurdistan has taken place on 2-D seismic with vertical exploration wells. In the last few years, a number of 3-D seismic surveys have been acquired and these will undoubtedly lead to production and reserve enhancements in parallel with increased subsurface complexity. Following a decade of exploration, three fields have been fully appraised and have a reasonable early production history: Tawke, Taq Taq and Khurmala. Reserve additions in the Tawke Field have been significant as a result of increased production performance due to better than originally anticipated reservoir properties, better pressure communication and additional reserves found in older reservoirs. It is probable that similar trends will occur in other fields and discoveries. Whilst a small number of horizontal wells have been drilled, advanced techniques used for producing from tight fractured carbonates such as multilateral wells, hydraulic fracturing, selective completions, proping and water injection have not as yet been used in the region. Almost all wells in Kurdistan have been drilled on surface or near subsurface structures within the foreland or the fold belt. Some wells have drilled through thrusts, more often by accident as opposed to on purpose. There have been virtually no dedicated wells for pure sub-thrust plays or stratigraphic traps although hydrocarbons have been found below significant thrusts and also beyond apparent structural closure in some structures. Challenges remain in what is a structurally complex and recently deformed region. High levels of exploration and appraisal activity persist and new pipeline infrastructure is under construction. It is likely that the Kurdistan Region of Iraq will develop to become an important contributor to world oil and gas production. This paper aims to summarise the first decade of exploration and appraisal activity in Kurdistan Region of northern Iraq. Due to the paucity of technical papers on this subject, this document draws upon the authors’ own knowledge and material published by companies operating in the region.


Author(s):  
Pengda Cheng ◽  
Weijun Shen ◽  
Qingyan Xu ◽  
Xiaobing Lu ◽  
Chao Qian ◽  
...  

AbstractUnderstanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young’s modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


Sign in / Sign up

Export Citation Format

Share Document