scholarly journals Large Deflection of Prismatic Cantilever Beam Exposed to Combination of End Inclined Force and Tip Moment

2017 ◽  
Vol 12 (1) ◽  
pp. 98 ◽  
Author(s):  
Ibrahim Abu-Alshaikh ◽  
Hashem S. Alkhaldi ◽  
Nabil Beithou

The large deflection of a prismatic Euler-Bernoulli cantilever beam under a combination of end-concentrated coplanar inclined force and tip-concentrated moment is investigated. The angle of inclination of the applied force with respect to the horizontal axis remains unchanged during deformation. The cantilever beam is assumed to be naturally straight, slender, inextensible and elastic. The large deflection of the cantilever beam induces geometrical nonlinearity; hence, the nonlinear theory of bending and the exact expression of curvature are used. Based on an elliptic integral formulation, an accurate numerical solution is obtained in terms of an integration constant that should satisfy the boundary conditions associated with the cantilever beam. For some special cases this integration constant is exactly found, which leads to closed form solution. The numerical solution obtained is quite simple, accurate and involves less computational time compared with other techniques available in literature. The details of elastica and its corresponding orientation curves are presented and analyzed for extremely large load combinations. A comparative study with pre-obtained results has been made to verify the accuracy of the presented solution; an excellent agreement has been obtained.

Author(s):  
A.N. Sherbourne ◽  
F. Lu

The behaviour of a flexural elasto-plastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay [1] is extended to include post-yield behaviour. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
N. Tolou ◽  
J. L. Herder

The deflection of compliant mechanism (CM) which involves geometrical nonlinearity due to large deflection of members continues to be an interesting problem in mechanical systems. This paper deals with an analytical investigation of large deflections in compliant mechanisms. The main objective is to propose a convenient method of solution for the large deflection problem in CMs in order to overcome the difficulty and inaccuracy of conventional methods, as well as for the purpose of mathematical modeling and optimization. For simplicity, an element is considered which is a cantilever beam out of linear elastic material under vertical end point load. This can further be used as a building block in more complex compliant mechanisms. First, the governing equation has been obtained for the cantilever beam; subsequently, the Adomian decomposition method (ADM) has been utilized to obtain a semianalytical solution. The vertical and horizontal displacements of a cantilever beam can conveniently be obtained in an explicit analytical form. In addition, variations of the parameters that affect the characteristics of the deflection have been examined. The results reveal that the proposed procedure is very accurate, efficient, and convenient for cantilever beams, and can probably be applied to a large class of practical problems for the purpose of analysis and optimization.


Author(s):  
Chia-Wen Hsu ◽  
Chyanbin Hwu

It is known that the stretching and bending deformations will be coupled together for the unsymmetric composite laminates under in-plane force and/or out-of-plane bending moment. Although Green's functions for unsymmetric composite laminates with elliptical elastic inclusions have been obtained by using Stroh-like formalism around 10 years ago, due to the ignoring of inconsistent rigid body movements of matrix and inclusion, the existing solution may lead to displacement discontinuity across the interface between matrix and inclusion. Due to the multi-valued characteristics of complex logarithmic functions appeared in Green's functions, special attention should be made on the proper selection of branch cuts of mapped variables. To solve these problems, in this study, the existing Green's functions are corrected and a simple way to correctly evaluate the mapped complex variable logarithmic functions is suggested. Moreover, to apply the obtained solutions to boundary element method, we also derive the explicit closed-form solution for Green's function of deflection. Since the continuity conditions along the interface have been satisfied in Green's functions, no meshes are required along the interface, which will save a lot of computational time and the results are much more accurate than any other numerical methods.


1977 ◽  
Vol 55 (4) ◽  
pp. 305-324 ◽  
Author(s):  
S. Przeździecki ◽  
R. A. Hurd

An exact, closed-form solution is found for the following half-plane diffraction problem: (I) The medium surrounding the half-plane is both electrically and magnetically gyrotropic. (II) The scattering half-plane is perfectly conducting and oriented perpendicular to the distinguished axis of the medium. (III) The incident electromagnetic plane wave propagates in a direction normal to the edge of the half-plane.The formulation of the problem leads to a coupled pair of Wiener–Hopf equations. These had previously been thought insoluble by quadratures, but yield to a newly discovered technique : the Wiener–Hopf–Hilbert method. A basic feature of the problem is its two-mode character i.e. plane waves of both modes are necessary for the spectral representation of the solution. The coupling of these modes is purely due to edge diffraction, there being no reflection coupling. The solution obtained is simple in that the Fourier transforms of the field components are just algebraic functions. Properties of the solution are investigated in some special cases.


2018 ◽  
Vol 10 (8) ◽  
pp. 2671 ◽  
Author(s):  
Ahmed Zeeshan ◽  
Nouman Ijaz ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

This study deals with the peristaltic transport of non-Newtonian Jeffrey fluid with uniformly distributed identical rigid particles in a rectangular duct. The effects of a magnetohydrodynamics bio-bi-phase flow are taken into account. The governing equations for mass and momentum are simplified using the fact that wavelength is much greater than the amplitude and small Reynolds number. A closed-form solution for velocity is obtained by means of the eigenfunction expansion method whereby pressure rise is numerically calculated. The results are graphically presented to observe the effects of different physical parameters and the suitability of the method. The results for hydrodynamic, Newtonian fluid, and single-phase problems can be respectively obtained by taking the Hartmann number (M = 0), relaxation time (λ1=0), and volume fraction (C = 0) as special cases of this problem.


2017 ◽  
Vol 837 ◽  
pp. 210-229 ◽  
Author(s):  
E. V. Dontsov ◽  
O. Kresse

This study investigates the problem of a semi-infinite hydraulic fracture that propagates steadily in a permeable formation. The fracturing fluid rheology is assumed to follow a power-law behaviour, while the leak-off is modelled by Carter’s model. A non-singular formulation is employed to effectively analyse the problem and to construct a numerical solution. The problem under consideration features three limiting analytic solutions that are associated with dominance of either toughness, leak-off or viscosity. Transitions between all the limiting cases are analysed and the boundaries of applicability of all these limiting solutions are quantified. These bounds allow us to determine the regions in the parametric space, in which these limiting solutions can be used. The problem of a semi-infinite fracture, which is considered in this study, provides the solution for the tip region of a hydraulic fracture and can be used in hydraulic fracturing simulators to facilitate solving the moving fracture boundary problem. To cater for such applications, for which rapid evaluation of the solution is necessary, the last part of this paper constructs an approximate closed form solution for the problem and evaluates its accuracy against the numerical solution inside the parametric space.


1980 ◽  
Vol 102 (3) ◽  
pp. 242-248 ◽  
Author(s):  
R. C. Shieh

An existing closed-form solution for large-deflection static responses of centrally loaded, rigid, perfectly plastic circular metal plates (with emphasis on steel plate cases) that are clamped (built-in) or simply supported at the edges is first modified to take into account the effects of elastic deformation and material strainhardening in an approximate manner. The modified theoretical solution is first shown to correlate very well with experimental results. Then it is applied in solving the quasi-static plate puncture problem in which the punch bar penetrates slowly into the plate. An analytical/experimental correlation study on punch force-deflection relationship and incipient plate puncture energy is made on newly obtained experimental data. Effects of variation of strainhardening parameter, boundary conditions and shear deformation on incipient puncture energy are studied, and plate puncture design curves are developed in the form of nondimensional incipient plate puncture energy as a function of punch diameter/plate thickness ratio for various values of punch diameter/plate diameter ratio. Application of these analytical techniques/design curves to the design of nuclear shipping cask plate components subject to regulatory puncture drop loading is also discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1770
Author(s):  
Jun-Yi Sun ◽  
Qi Zhang ◽  
Xue Li ◽  
Xiao-Ting He

The anticipated use of a hollow linearly elastic annular membrane for designing elastic shells has provided an impetus for this paper to investigate the large deflection geometrically nonlinear phenomena of such a hollow linearly elastic annular membrane under transverse uniform loads. The so-called hollow annular membranes differ from the traditional annular membranes available in the literature only in that the former has the inner edge attached to a movable but weightless rigid concentric circular ring while the latter has the inner edge attached to a movable but weightless rigid concentric circular plate. The hollow annular membranes remove the transverse uniform loads distributed on “circular plate” due to the use of “circular ring” and result in a reduction in elastic response. In this paper, the large deflection geometrically nonlinear problem of an initially flat, peripherally fixed, linearly elastic, transversely uniformly loaded hollow annular membrane is formulated, the problem formulated is solved by using power series method, and its closed-form solution is presented for the first time. The convergence and effectiveness of the closed-form solution presented are investigated numerically. A comparison between closed-form solutions for hollow and traditional annular membranes under the same conditions is conducted, to reveal the difference in elastic response, as well as the influence of different closed-form solutions on the anticipated use for designing elastic shells.


Robotica ◽  
1988 ◽  
Vol 6 (4) ◽  
pp. 299-309 ◽  
Author(s):  
Kesheng Wang ◽  
Terje K. Lien

SUMMARYIn this paper we show that a robot manipulator with 6 degrees of freedom can be separated into two parts: arm with the first three joints for major positioning and wrist with the last three joints for major orienting. We propose 5 arms and 2 wrists as basic construction for commercially robot manipulators. This kind of simplification can lead to a general algorithm of inverse kinematics for the corresponding configuration of different combinations of arm and wrist. The approaches for numerical solution and closed form solution presented in this paper are very efficient and easy for calculating the inverse kinematics of robot manipulator.


Sign in / Sign up

Export Citation Format

Share Document