scholarly journals The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body

2018 ◽  
Vol 10 (8) ◽  
pp. 2671 ◽  
Author(s):  
Ahmed Zeeshan ◽  
Nouman Ijaz ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

This study deals with the peristaltic transport of non-Newtonian Jeffrey fluid with uniformly distributed identical rigid particles in a rectangular duct. The effects of a magnetohydrodynamics bio-bi-phase flow are taken into account. The governing equations for mass and momentum are simplified using the fact that wavelength is much greater than the amplitude and small Reynolds number. A closed-form solution for velocity is obtained by means of the eigenfunction expansion method whereby pressure rise is numerically calculated. The results are graphically presented to observe the effects of different physical parameters and the suitability of the method. The results for hydrodynamic, Newtonian fluid, and single-phase problems can be respectively obtained by taking the Hartmann number (M = 0), relaxation time (λ1=0), and volume fraction (C = 0) as special cases of this problem.

2010 ◽  
Vol 65 (6-7) ◽  
pp. 483-494 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present paper, we have studied the influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jeffrey fluid equations are simplified using the long wave length and low Reynolds number assumptions. In the wave frame of reference, an exact and closed form of Adomian solution is presented. The expressions for pressure drop, pressure rise, stream function, and temperature field have been calculated. The behaviour of different physical parameters has been discussed graphically. The pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square, triangular, and trapezoidal) are also studied.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650023 ◽  
Author(s):  
K. Vajravelu ◽  
S. Sreenadh ◽  
P. Lakshminarayana ◽  
G. Sucharitha

In this paper we analyze the influence of free convection on nonlinear peristaltic transport of a Jeffrey fluid in a finite vertical porous stratum using the Brinkman model. Heat is generated within the fluid by both viscous and Darcy dissipations. The coupled nonlinear governing equations are solved analytically. The expressions for the temperature, the axial velocity, the local wall shear stress and the pressure gradient are obtained. The effects of various physical parameters such as the Jeffrey parameter [Formula: see text], the permeability parameter [Formula: see text] and the heat source/sink parameter [Formula: see text] are analyzed through graphs, and the results are discussed in detail. It is observed that the velocity field increases with increasing values of the Jeffrey parameter but it decreases with increasing values of the permeability parameter. It is found that the pressure rise increases with decreasing Jeffrey parameter and increasing permeability parameter. We notice that the effect of the permeability parameter [Formula: see text] is the strongest on the bolus trapping phenomenon. For [Formula: see text] [Formula: see text] the results of the present study reduce to the results of Tripathi [Math. Comput. Modelling 57 (2013) 1270–1283]. Further the effect of viscous and Darcy dissipations is to reduce the rate of heat transfer in the finite vertical porous channel under peristalsis.


Author(s):  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
Laiba Shabbir ◽  
Adila Saleem ◽  
M. Ijaz Khan ◽  
...  

In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source of the flow is metachronal waves which are caused by the back and forth motion of cilia attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson fluid experience the effects of transverse magnetic fields incorporated with the slippery walls of the channel. Thermal effects are examined by taking Roseland’s approximation and application of thermal radiation into account. The heat transfer through the multiphase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow. Since the main objective of the current study is to analyze heat transfer through an MHD multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is driven by cilia motion results in nonlinear and coupled differential equations which are transformed and subsequently, integrated subject to slip boundary conditions. A closed-form solution is eventually obtained form that effectively describes the flow dynamics of multiphase flow. A comprehensive parametric study is carried out which highlights the significant contribution of pertinent parameters of the heat transfer of Casson multiphase flow. It is inferred that lubricated walls and magnetic fields hamper the movement of multiphase flow. It is noted that a sufficient amount of additional thermal energy moves into the system, due to the Eckert number and Prandtl number. While thermal radiation acts differently by expunging the heat transfer. Moreover, Casson multiphase flow is a more suitable source of heat transfer than Newtonian multiphase flow.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyi Guo ◽  
Jianwei Zhou ◽  
Huantian Xie ◽  
Ziwu Jiang

The magnetohydrodynamic (MHD) peristaltic flow of the fractional Jeffrey fluid through porous medium in a nonuniform channel is presented. The fractional calculus is considered in Darcy’s law and the constitutive relationship which included the relaxation and retardation behavior. Under the assumptions of long wavelength and low Reynolds number, the analysis solutions of velocity distribution, pressure gradient, and pressure rise are investigated. The effects of fractional viscoelastic parameters of the generalized Jeffrey fluid on the peristaltic flow and the influence of magnetic field, porous medium, and geometric parameter of the nonuniform channel are presented through graphical illustration. The results of the analogous flow for the generalized second grade fluid, the fractional Maxwell fluid, are also deduced as special cases. The comparison among them is presented graphically.


2012 ◽  
Vol 486 ◽  
pp. 99-103
Author(s):  
Huei Chu Weng ◽  
Yuan Kang

An analysis for the effect of nanoparticles in lubricants on load capacity is performed to study a rectangular thrust pad hydrostatic bearing with a central recess. The closed-form solution of the bearing load is derived analytically and presented for nanofluids with interparticle interaction. Results reveal that in the presence of nanoparticles, the enhanced viscosity could result in an increase in bearing load; moreover, this increase dramatically increases as particle volume fraction and/or interparticle interaction increases. The effect of nanoparticles on the bearing load can be magnified by decreasing the bearing gap.


Author(s):  
A R Saidi ◽  
A Naderi ◽  
E Jomehzadeh

In this article, a closed-form solution for bending/stretching analysis of functionally graded (FG) circular plates under asymmetric loads is presented. It is assumed that the material properties of the FG plate are described by a power function of the thickness variable. The equilibrium equations are derived according to the classical plate theory using the principle of total potential energy. Two new functions are introduced to decouple the governing equilibrium equations. The three highly coupled partial differential equations are then converted into an independent equation in terms of transverse displacement. A closed-form solution for deflection of FG circular plates under arbitrary lateral eccentric concentrated force is obtained by defining a new coordinate system. This solution can be used as a Green function to obtain the closed-form solution of the FG plate under arbitrary loadings. Also, the solution is employed to solve some different asymmetric problems. Finally, the stress and displacement components are obtained exactly for each problem and the effect of volume fraction is also studied.


1977 ◽  
Vol 55 (4) ◽  
pp. 305-324 ◽  
Author(s):  
S. Przeździecki ◽  
R. A. Hurd

An exact, closed-form solution is found for the following half-plane diffraction problem: (I) The medium surrounding the half-plane is both electrically and magnetically gyrotropic. (II) The scattering half-plane is perfectly conducting and oriented perpendicular to the distinguished axis of the medium. (III) The incident electromagnetic plane wave propagates in a direction normal to the edge of the half-plane.The formulation of the problem leads to a coupled pair of Wiener–Hopf equations. These had previously been thought insoluble by quadratures, but yield to a newly discovered technique : the Wiener–Hopf–Hilbert method. A basic feature of the problem is its two-mode character i.e. plane waves of both modes are necessary for the spectral representation of the solution. The coupling of these modes is purely due to edge diffraction, there being no reflection coupling. The solution obtained is simple in that the Fourier transforms of the field components are just algebraic functions. Properties of the solution are investigated in some special cases.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450064 ◽  
Author(s):  
K. Vajravelu ◽  
S. Sreenadh ◽  
G. Sucharitha ◽  
P. Lakshminarayana

Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with different amplitudes and phases. The nonlinear governing equations are solved analytically by a perturbation technique. The expressions for the stream function, axial velocity and the pressure rise per wavelength are determined in terms of the Jeffrey number λ1, the Froude number Fr, the perturbation parameter δ, the angle of inclination θ and the phase difference ϕ. Effects of the physical parameters on the velocity field and the pumping characteristics are discussed. It is observed that the size of the trapping bolus increase with an increase in the magnetic parameter and the volume flow rate. That is, the magnetic parameter and the volume flow rate have strong influence on the trapping bolus phenomenon.


Author(s):  
Elefterija Zlatanović ◽  
Dragan Č. Lukić ◽  
Vlatko Šešov ◽  
Zoran Bonić

Contemporary life streams, more often than ever, impose the necessity for construction of new underground structures in the vicinity of existing tunnels, with an aim to accommodate transportation systems and utility networks. A previously uninvestigated case, in which a newly-constructed tunnel opening is closely positioned behind an existing tunnel, referred to as the tunnel–cavity configuration, has been considered in this study. An exact analytical solution is derived considering a pair of parallel circular cylindrical structures of infinite length, with the horizontal alignment, embedded in a boundless homogeneous, isotropic, elastic medium and excited by time-harmonic plane SV-waves under the plane-strain conditions. The Helmholtz decomposition theorem, the wave functions expansion method, the translational addition theorem for bi-cylindrical coordinates, and the pertinent boundary conditions are jointly employed in order to develop a closed-form solution of the corresponding boundary value problem. The primary goal of the present study is to examine the increase in dynamic stresses at an existing tunnel structure due to the presence of a closely driven unlined cavity, as well as in a localized region around the tunnel (at the position of the cavity in close proximity), under incident SV-waves. A new quantity called dynamic stress alteration factor is introduced and the aspect of the minimum seismically safe distance between the two structures is particularly considered.


Sign in / Sign up

Export Citation Format

Share Document