scholarly journals The Thermal Encroachment of Microwave Heating with Nano Ferro Fluids Injection on Heavy Oil Deposits

2018 ◽  
Vol 12 (9) ◽  
pp. 1 ◽  
Author(s):  
Erdila Indriani ◽  
Sudjati Rachmat ◽  
Leksono Mucharram ◽  
Agus Yodi Gunawan ◽  
Munir Achmad ◽  
...  

Heavy oil demands more energy for its lifting to the surface facilities. A critical parameter that can be altered to enhance the production from the reservoir is the viscosity. Lowering oil viscosity predominantly achieved by thermal methods. This study investigated thermal encroachment in the sand pack layers as simulated heavy oil reservoir was generated by the microwave stack heated mixtures of 22 0API of Indonesian heavy crude, nano-ferrofluidFe2O3 and saturated brines. The wave guide was used to focus microwave radiation into the sand bed. The experimental results showed thatmicrowaveheatingwith maximum output power of 900 Watt and Fe2O3 as the nano particles, works at the frequency of 2.45 GHz reduces oil viscosity from 4,412.11 cP on its pour point at 51 0C to 134.24 cP at 90 0C. Thermal heating with nano ferro fluidsdecreased the viscosityof heavyoiland make it easierto beflowed. Theincreasesoftemperature are directly proportionalwithpoweroutput and nano-ferroconcentration.

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 511-521
Author(s):  
V.. Mohan ◽  
P.. Neogi ◽  
B.. Bai

Summary The dynamics of a process in which a solvent in the form of a vapor or gas is introduced in a heavy-oil reservoir is considered. The process is called the solvent vapor-extraction process (VAPEX). When the vapor dissolves in the oil, it reduces its viscosity, allowing oil to flow under gravity and be collected at the bottom producer well. The conservation-of-species equation is analyzed to obtain a more-appropriate equation that differentiates between the velocity within the oil and the velocity at the interface, which can be solved to obtain a concentration profile of the solvent in oil. We diverge from an earlier model in which the concentration profile is assumed. However, the final result provides the rate at which oil is collected, which agrees with the previous model in that it is proportional to h, where h is the pay-zone height; in contrast, some of the later data show a dependence on h. Improved velocity profiles can capture this dependence. A dramatic increase in output is seen if the oil viscosity decreases in the presence of the solvent, although the penetration of the solvent into the oil is reduced because under such conditions the diffusivity decreases with decreased solvent. One other important feature we observe is that when the viscosity-reducing effect is very large, the recovered fluid is mainly solvent. Apparently, some optimum might exist in the solubility φo, where the ratio of oil recovered to solvent lost is the largest. Finally, the present approach also allows us to show how the oil/vapor interface evolves with time.


2014 ◽  
Vol 644-650 ◽  
pp. 871-874
Author(s):  
Zhen Dong Li

Based on the assisted gravity draining steam flooding and the development technology of drive drain compound, using computational fluid dynamics software ANYSY CFX to analyze the impact of the oil reservoir thickness、density of the crude oil 、oil viscosity and oil saturation on the seepage velocity difference. Research shows that: These factors have a significant impact on the flow velocity difference Research results provide reference for seepage study of gravity drive of heavy oil .


2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.


2012 ◽  
Vol 594-597 ◽  
pp. 2438-2441 ◽  
Author(s):  
Shi Jun Huang ◽  
Ping Hu ◽  
Qiu Li

In this paper, employing reservoir simulation and mathematical analysis methods, considering typical heavy oil reservoir and fluid thermal properties, the heating and producing shape of thermal recovery with horizontal well for different heavy oil reservoirs including ordinary, extra and super heavy oil are investigated based on the modification of thermal recovery parameters of different viscosity. By introducing heating radius and producing radius and considering the coupling effect of temperature, pressure and oil saturation fields, a quantitative expression between heating radius/producing radius and oil viscosity, formation thickness is presented, so is the impact of oil viscosity on the heating radius. Results shows that for Cyclic Steam Stimulation, the producing radius of horizontal well is bigger than its heating radius for light oil, both of which, however, shrink with higher viscosity. Beyond a critical viscosity, where the heating radius equals to the producing radius, the heating radius of horizontal well would be bigger than its producing radius. More over, the critical viscosity shows tight relationship to the formation thickness.


2016 ◽  
Vol 818 ◽  
pp. 287-290 ◽  
Author(s):  
Wan Rosli Wan Sulaiman ◽  
Azza Hashim

High oil viscosity is a major concern for recovery from heavy oil reservoir. Introducing heat to the formation has proven to be an effective way to improve mobility. The Heat transfer to the oil and reservoir rock is good for thermal recovery. The thermal recovery involves a well-known technique of cyclic steam stimulation which actually effect the nearby well area. Heavy oil reservoir which uses the thermal technique will experience the change of property. Fula North East (FNE) Sudanese field is located in the north-eastern part of Fula sub-basin. According to the development program of FNE, Bentiu layer (of Bentiu group) is the targeted reservoir where the pressure gradient is 285.65 psi/100m, perforation intervals is 540-533 m, and the average oil production rate of single well by applying the cyclic steam stimulation (CSS) is 236 bbl/d. For well- Q, (one of the hot wells) to void the bottom water the average production rate is 191 bbl/d. A minor change is observed in the key properties of the well when the skin affect is varied.


2018 ◽  
pp. 57-63
Author(s):  
I. V. Kovalenko ◽  
S. K. Sokhoshko ◽  
D. A. Listoykin

The article presents the experience in the stage of experimental industrial exploitation and industrial exploitation of the field with a system for the development of horizontal wells with non-standard oil properties (high oil viscosity) and complex geological structure (gas cap and aquifer). The focus of the article is on the estimation of aquifer activity by using well tests.


2012 ◽  
Vol 524-527 ◽  
pp. 1245-1251
Author(s):  
Fu Lin Wang

Artificial barrier morphology distribution mechanism and the EOR factors of he heavy oil reservoir with bottom water is be researched, Through numerical calculation and numerical simulation method. The model for calculating the height of the artificial-interlayer with curvilinear side surface is established. This model quantitatively describes the relationship between the artificial-interlayer height and oil yield, reservoir thickness, radial distance from well axis, reservoir permeability and crude oil viscosity. Maximum artificial-interlayer height and radius, the artificial-interlayer heights at different radial distances can be obtained according to this model. Through the case, the characteristics of artificial-interlayer form are analyzed, and rules of artificial-interlayer conformation are obtained when artificial-interlayer liquid with different volume, viscosity and race are injected. The further research are carried out through numerical simulation method, and the theoretical results are be Compared and verified which deepen the study of artificial-interlayer shape influence factor . Results show that: the volume and position of injected gel have more influence on development effect is obviously, the interlayer is designed 3M over the oil-water interface and thickness perforated is 6m is better, which provides a reference for the development of bottom-water reservoir.


2016 ◽  
Author(s):  
Abdulrahim Kamel ◽  
Osamah Alomair ◽  
Adel Elsharkawy

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Tamer Moussa ◽  
Mohamed Mahmoud ◽  
Esmail M. A. Mokheimer ◽  
Mohamed A. Habib ◽  
Salaheldin Elkatatny

Determination of optimal well locations plays an important role in the efficient recovery of hydrocarbon resources. However, it is a challenging and complex task. The objective of this paper is to determine the optimal well locations in a heavy oil reservoir under production using a novel recovery process in which steam is generated, in situ, using thermochemical reactions. Self-adaptive differential evolution (SaDE) and particle swarm optimization (PSO) methods are used as the global optimizer to find the optimal configuration of wells that will yield the highest net present value (NPV). This is the first known application, where SaDE and PSO methods are used to optimize well locations in a heavy oil reservoir that is recovered by injecting steam generated in situ using thermo-chemical reactions. Comparison analysis between the two proposed optimization techniques is introduced. On the other hand, laboratory experiments were performed to confirm the heavy oil production by thermochemical means. CMG STARS simulator is utilized to simulate reservoir models with different well configurations. The experimental results showed that thermochemicals, such as ammonium chloride along with sodium nitrate, can be used to generate in situ thermal energy, which efficiently reduces heavy-oil viscosity. Comparison of results is made between the NPV achieved by the well configuration proposed by the SaDE and PSO methods. The results showed that the optimization using SaDE resulted in 15% increase in the NPV compared to that of the PSO after 10 years of production under in situ steam injection process using thermochemical reactions.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 175
Author(s):  
Lucía Mateus ◽  
Esteban A. Taborda ◽  
Carlos Moreno-Castilla ◽  
María Victoria López-Ramón ◽  
Camilo A. Franco ◽  
...  

The main objective of this study is the synthesis, use, and reuse of magnetic copper ferrite nanospheres (CFNS) for extra-heavy oil viscosity reduction. The CFNS were synthesized using a solvothermal method resulting in mean particle size of 150 nm. Interactions of CFNS with the crude oil were evaluated through asphaltene adsorption isotherms, as well as static and dynamic rheology measurements for two cycles at 25 °C. Adsorption and desorption experiments corroborated that most of the asphaltenes adsorbed can be removed for nanoparticle reuse. During the rheology tests, nanoparticles were evaluated in the first cycle at different concentrations from 300 to 1500 mg/L, leading to the highest degree of viscosity reduction of 18% at 500 mg/L. SiO2 nanoparticles were evaluated for comparison issues, obtaining similar results regarding the viscosity reduction. After measurements, the CFNS were removed with a magnet, washed with toluene, and further dried for the second cycle of viscosity reduction. Rheology tests were performed for a second time at a fixed concentration of 500 mg/L, and slight differences were observed regarding the first cycle. Finally, changes in the extra-heavy oil microstructure upon CFNS addition were observed according to the significant decrease in elastic and viscous moduli.


Sign in / Sign up

Export Citation Format

Share Document