Impacts of climate change on diversity in forested ecosystems: Some examples

2005 ◽  
Vol 81 (5) ◽  
pp. 655-661 ◽  
Author(s):  
Paul A Gray

Ecological diversity (the product of ecosystem, species, and genetic diversity) will change significantly in the 21st Century in response to the combined influence of climate, human activities, the movement of indigenous and non-indigenous species, and natural disturbances like fire (also modified by climate). Many species will acclimate (phenotypic variation) and/or adapt (genotypic variation) to changing conditions. Many will not. Species with a high rate of reproduction that are able to move long distances, rapidly colonize new habitats, tolerate humans, and survive within a broad range of biophysical conditions will be most successful in finding new niches. Large changes in ecosystem composition, structure, and function are expected to occur at northern latitudes and higher altitudes. In some areas novel ecosystems likely will replace existing subalpine, alpine, boreal forest, and tundra ecosystems. Key words: climate change, ecodiversity, forest, ecosystem diversity, species diversity, genetic diversity

2022 ◽  
pp. 177-205
Author(s):  
Roger J.H. Herbert ◽  
Guillaume Corbeau ◽  
Laurent Godet ◽  
Nicolas Desroy ◽  
Nova Mieszkowska ◽  
...  

2010 ◽  
Vol 45 (Special Issue) ◽  
pp. S53-S62 ◽  
Author(s):  
Z. Laštůvka

Insect pests, as widely tolerant and adaptable organisms, may be less distinctly affected by climate change than other insect species. The changing climate may affect the occurrence and impact of the native pests both negatively and positively (increased importance of thermophilous and xerophilous species and decreased importance of psychrophilous ones, noxious abundances of several species also in higher altitudes, decrease of many pests by frost-free winters, low humidity, weather extremes, increased numbers of antagonists, and phenological discrepancy with the host plant). Expansions of new pests into the territory of the Czech Republic, caused by climate change, will be very limited. A small number of greenhouse pests may be expected to occur in outdoor conditions. Increased temperatures may cause a slight increase of non-indigenous invasive insect species and migratory pests. In Central Europe the climate change will intensify the effects of other factors. In the next 20–50 years, the changes in species composition and importance of insect pests of plants will be caused by factors in the following order: (l) introductions of non-indigenous species, (2) new approaches in pest control, (3–4) changes in crop cultivation and representation of crops, (3–4) climate change, (5) other causes (unexpected shifts of ranges, changes in food preferences of insect species, etc.).


2019 ◽  
Vol 6 ◽  
Author(s):  
Nuno Castro ◽  
João Canning-Clode ◽  
Patrício Ramalhosa ◽  
Eva Cacabelos ◽  
José Lino Costa ◽  
...  

2013 ◽  
Vol 20 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Chris Ware ◽  
Jørgen Berge ◽  
Jan H. Sundet ◽  
Jamie B. Kirkpatrick ◽  
Ashley D. M. Coutts ◽  
...  

2021 ◽  
Vol 40 ◽  
Author(s):  
Jakub Skorupski ◽  
Magdalena Szenejko ◽  
Martyna Gruba-Tabaka ◽  
Przemysław Śmietana ◽  
Remigiusz Panicz

Polar and subpolar regions are known for their particular vulnerability and sensitivity to the detrimental effects of non-indigenous species, which is well exemplified by the Nootka lupin (Lupinus nootkatensis) spread in Iceland. Since understanding the population and ecological genetics of invasive alien species offers hope for counteracting harmful biological invasions, the objective of the present study was to investigate interspecific variation in L. nootkatensis in Iceland in relation to a native population in Alaska. Moreover, we aimed to assess whether internal transcribed spacer 2 (ITS2) has sufficient phylogenetic applicability for a large-scale screening of the genetic diversity of a non-indigenous population of this species. This study, which is the first attempt to investigate the genetic diversity of the Nootka lupin in Iceland, included plant samples from eight locations in Iceland and one in Alaska. The analyses included genotyping by sequencing of the 417-nucleotide fragment of the 5.8S ribosomal RNA, ITS2 and part of the large subunit ribosomal RNA (GenBank MT026578-MT026580, MT077004). The main findings showed the presence of five previously unexplained single-nucleotide polymorphisms (SNPs); however, their discriminatory power for Icelandic populations was relatively low, since polymorphism information content (PIC) values ranged from 0.0182 to 0.0526, with average heterozygosity 0.0296. Concomitantly, analysis of multilocus genotypes (MLG) revealed sufficient differences in MLGs variants and their frequency to form genotypic patterns unique for Alaskan and Icelandic populations, revealing an internal genetic structure of the studied group. The proposed SNP panel needs to be supplemented with other nuclear and organellar markers.


2020 ◽  
Vol 21 (6) ◽  
pp. 2030
Author(s):  
Eva Cacabelos ◽  
Patrício Ramalhosa ◽  
João Canning-Clode ◽  
Jesús S. Troncoso ◽  
Celia Olabarria ◽  
...  

Microbial biofilms can be key mediators for settlement of macrofoulers. The present study examines the coupled effects of microbial biofilms and local environmental conditions on the composition, structure and functioning of macrofouling assemblages. Settlement of invertebrates over a gradient of human-impacted sites was investigated on local biofilms and on biofilms developed in marine protected areas (MPAs). Special attention was given to the presence of non-indigenous species (NIS), a global problem that can cause important impacts on local assemblages. In general, the formation of macrofouling assemblages was influenced by the identity of the biofilm. However, these relationships varied across levels of anthropogenic pressure, possibly influenced by environmental conditions and the propagule pressure locally available. While the NIS Watersipora subatra seemed to be inhibited by the biofilm developed in the MPA, Diplosoma cf. listerianum seemed to be attracted by biofilm developed in the MPA only under mid anthropogenic pressure. The obtained information is critical for marine environmental management, urgently needed for the establishment of prevention and control mechanisms to minimize the settlement of NIS and mitigate their threats.


Sign in / Sign up

Export Citation Format

Share Document