Orthoamides and Iminium Salts, LXXX [1]. C-Glycosyl Alkynecarboxylic Acid Orthoamides. Versatile Intermediates in the Synthesis of New Types of Highly Substituted C-Nucleoside Analogs

2012 ◽  
Vol 67 (7) ◽  
pp. 699-716 ◽  
Author(s):  
Konstantin Drandarov ◽  
Willi Kantlehner

The C-glycosyl alkynecarboxylic acid orthoamides 22 and 23 are proposed as versatile precursors for the synthesis of new types of C-nucleoside analogs. The new synthetic strategy includes alkynylation of protected aldoses 13 or ketoses by Grignard ethynylation or Barbier propargylation, O-protection of the resulting alkynols 14-16, and nucleophilic addition of the metalated protected terminal alkynes 20 and 21 to peralkylguanidinium salt 2 to afford the corresponding alkynecarboxylic acid orthoamides 22 and 23, which in reactions with mono or bis-nucleophiles could serve as building blocks for the construction of a wide variety of C-nucleoside-like binary conjugates. All the steps are demonstrated on 2,4,3,5-bis(4-methoxybenzylidene)-protected L-xylose 11 as a model compound. The synthesis of a representative series of C-glycosidic conjugates of highly substituted “push-pull” 1,3-butadienes 32-35, pyrimidines 24-31, and 2-pyridones 36-39 is included. The stereochemistry of all described compounds is established by 2D-NMR techniques. A general character of the proposed synthetic strategy, when applied to different appropriately protected sugar derivatives, is suggested, and a biomedical applicability of the described type of conjugates is expected.

2020 ◽  
Vol 16 ◽  
pp. 1456-1464
Author(s):  
Aleksandar Pashev ◽  
Nikola Burdzhiev ◽  
Elena Stanoeva

The Castagnoli–Cushman reaction of 3,4-dihydroisoquinolines with glutaric anhydride, its oxygen and sulfur analogues was investigated as a one-step approach to the benzo[a]quinolizidine system and its heterocyclic analogs. An extension towards the pyrrolo[2,1-a]isoquinoline system was achieved with the use of succinic anhydride. The results are evidence of an unexplored method for the access of the aforementioned tricyclic annelated systems incorporating a bridgehead nitrogen atom. The structures and relative configurations of the new compounds were established by means of 1D and 2D NMR techniques. The reactions between 1-methyldihydroisoquinoline and glutaric, diglycolic and succinic anhydrides yielded unexpected isoquinoline derivatives containing an exocyclic double bond. The compounds prepared bear the potential to become building blocks for future synthetic bioactive molecules.


2019 ◽  
Vol 16 (6) ◽  
pp. 474-477 ◽  
Author(s):  
Pham Van Khang ◽  
Nguyen Thi Hien Lan ◽  
Le Quang Truong ◽  
Mai Thi Minh Chau ◽  
Mai Xuan Truong ◽  
...  

In this report, two new steroidal glycosides were isolated and determined from n-butanol fraction of A.asphodeloides. The structures were confirmed in comparison with the spectral data of known compounds by using different spectroscopic analysis approaches including 1D & 2D-NMR techniques and HRMS. The anti-proliferation screening against cancer cell lines A549 and HeLa indicated that compound 1 exhibited good inhibitory activities with IC50 values of 0.79 and 0.55 µg/mL, respectively.


2020 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Lalan C. Mandal ◽  
Rajiv Roy

Flavonoids are considered as a significant class of compounds among the natural products, exhibiting a variety of structural skeletons as well as multidirectional biological potentials. In structural elucidations of natural products, Nuclear Magnetic Resonance (NMR) spectroscopy has been playing a vital role; the technique is one of the sharpest tools in the hands of natural products chemists. The present resume deals with hard-core applications of such spectral technique, particularly in structural elucidation of flavonoids; different NMR techniques including 1H-NMR, 13C-NMR, and 2D-NMR [viz. 1H-1H COSY, COLOC, HMBC, HMQC] are described in detail.


2020 ◽  
Vol 09 ◽  
Author(s):  
Minita Ojha ◽  
R. K. Bansal

Background: During the last two decades, horizon of research in the field of Nitrogen Heterocyclic Carbenes (NHC) has widened remarkably. NHCs have emerged as ubiquitous species having applications in a broad range of fields, including organocatalysis and organometallic chemistry. The NHC-induced non-asymmetric catalysis has turned out to be a really fruitful area of research in recent years. Methods: By manipulating structural features and selecting appropriate substituent groups, it has been possible to control the kinetic and thermodynamic stability of a wide range of NHCs, which can be tolerant to a variety of functional groups and can be used under mild conditions. NHCs are produced by different methods, such as deprotonation of Nalkylhetrocyclic salt, transmetallation, decarboxylation and electrochemical reduction. Results: The NHCs have been used successfully as catalysts for a wide range of reactions making a large number of building blocks and other useful compounds accessible. Some of these reactions are: benzoin condensation, Stetter reaction, Michael reaction, esterification, activation of esters, activation of isocyanides, polymerization, different cycloaddition reactions, isomerization, etc. The present review includes all these examples published during the last 10 years, i.e. from 2010 till date. Conclusion: The NHCs have emerged as versatile and powerful organocatalysts in synthetic organic chemistry. They provide the synthetic strategy which does not burden the environment with metal pollutants and thus fit in the Green Chemistry.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2280
Author(s):  
Tomasz Koczorowski ◽  
Wojciech Szczolko ◽  
Anna Teubert ◽  
Tomasz Goslinski

The syntheses, spectral UV–Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV–Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles’ surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.


2021 ◽  
Vol 11 (6) ◽  
pp. 2576
Author(s):  
Sebastian Lijewski ◽  
Jiří Tydlitát ◽  
Beata Czarczynska-Goslinska ◽  
Milan Klikar ◽  
Jadwiga Mielcarek ◽  
...  

Tetrapyrazinoporphyrazine with peripheral menthol-thiophenyl substituents was synthesized using Linstead conditions and purified by flash column chromatography. The optimized synthetic and purification procedures allowed us to obtain a new macrocycle with 36% yield. Tetrapyrazinoporphyrazine derivative was characterized by UV–Vis and NMR spectroscopy, as well as MS spectrometry. Complex NMR studies using 1D and 2D NMR techniques allowed the analysis of the bulky menthol-thiophenyl substituted periphery of the new macrocycle. Further, photochemical stability and singlet oxygen quantum yield were determined by indirect method with diphenylisobenzofuran. The new tetrapyrazinoporphyrazine revealed low generation of singlet oxygen with a quantum yield of singlet oxygen formation at 2.3% in dimethylformamide. In turn, the macrocycle under irradiation with visible light presented very high stability with quantum yield for photostability of 9.59 × 10−6 in dimethylformamide, which figures significantly exceed the border for its classification as a stable porphyrinoid (10−4–10−5).


2001 ◽  
Vol 56 (7-8) ◽  
pp. 521-525 ◽  
Author(s):  
Denata Kasaj ◽  
Liselotte Krenn ◽  
Sonja Prinz ◽  
Antje Hüfner ◽  
Shi Shan Yuc ◽  
...  

The detailed investigation of a methanolic extract of aerial parts of Achillea pannonica SCHEELE. within a chemotaxonomic study led to the isolation of 6 flavonoid glycosides. Besides rutin, apigenin-7-O-glucopyranoside, luteolin-7-O-glucopyranoside, apigenin-7-O-rutinoside and acacetin-7-O-rutinoside, an unusual flavondiglucoside was isolated. Its structure was established by UV, 1HNMR and 13C NMR spectroscopic methods including 2D-NMR techniques and ESI-MS as luteolin-7,4′-O-β-diglucoside. This substance is reported for the first time in the genus Achillea. Chemotaxonomic aspects are discussed briefly


1995 ◽  
Vol 60 (4) ◽  
pp. 619-635 ◽  
Author(s):  
Václav Křeček ◽  
Stanislav Hilgard ◽  
Miloš Buděšínský ◽  
Alois Vystrčil

A series of derivatives with various oxygen functionalities in positions 17,22a or 19,20 was prepared from diene I and olefin XVI by addition and oxidation reactions. The structure of the obtained compounds was confirmed by 1H NMR, 13C NMR and IR spectroscopy. The kind of intramolecular association of the 17α-hydroxy group was studied in connection with modification of the side chain and substitution in position 22a. Complete assignment of the hydrogen signals and most of the coupling constants was accomplished using a combination of 1D and 2D NMR techniques. The 1H and 13C NMR spectra are discussed.


2010 ◽  
Vol 49 (13) ◽  
pp. 5971-5976 ◽  
Author(s):  
Hu Zhou ◽  
Ai-Hua Yuan ◽  
Su-Yan Qian ◽  
You Song ◽  
Guo-Wang Diao

Sign in / Sign up

Export Citation Format

Share Document