A New Isoxazolic Compound Acts as α7 Nicotinic Receptor Agonist in Human Umbilical Vein Endothelial Cells

2014 ◽  
Vol 69 (7-8) ◽  
pp. 291-299 ◽  
Author(s):  
Magdalena P. Cortés ◽  
Rocío Alvarez ◽  
Evelyn Sepúlveda ◽  
Felipe Jiménez-Aspee ◽  
Luis Astudillo ◽  
...  

Recent evidence suggests that the α7 nicotinic acetylcholine receptors (α7 nAChRs) participate in the development of angiogenesis and could be a new endothelial target for revascularization in therapeutic angiogenesis. It has been shown that in human umbilical vein endothelial cells (HUVECs) α7 nAChR agonists increase the intracellular calcium concentration ([Ca2+]i), thus inducing proliferation and vessel formation which are important stages of angiogenesis. In the present study we evaluated the effect of new isoxazole compounds on the cytosolic Ca2+ signal in HUVECs using the fluorescent Ca2+ indicator Fluo-3AM and probing the involvement of α7 nAChR by means of pharmacological tools. HUVECs expressed mainly α7 nAChR, since there was no significant difference in the increase in [Ca2+]i induced by nicotine, a non-selective nicotinic agonist, in relation to choline, a selective α7 nAChR agonist. The increase in [Ca2+]i induced by 1 mM choline was inhibited significantly (p = 0.014) in cells which had been pre-incubated for 15 min with methyllycaconitine (MLA), a selective α7 nAChR antagonist. The studied compounds 1, 2, and 3 induced an increase in [Ca2+]i in a dose-dependent manner. Compound 1 at 10 mM induced a greater increase in [Ca2+]i than compounds 2 and 3. The increase in [Ca2+]i induced by compound 1 was significantly inhibited by MLA (p = 0.013) and completely inhibited by mecamylamine, a non-selective nAChR antagonist, indicating that the isoxazolic compound 1 acts as an α7 nAChR agonist.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zhimin Zhang ◽  
Congying Wei ◽  
Yanfen Zhou ◽  
Tao Yan ◽  
Zhengqiang Wang ◽  
...  

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.


1997 ◽  
Vol 155 (3) ◽  
pp. 587-593 ◽  
Author(s):  
A Muscella ◽  
S Marsigliante ◽  
MA Carluccio ◽  
GP Vinson ◽  
C Storelli

Cultured human umbilical vein endothelial cells (HUVECs) at passage 4 specifically bound 70 +/- 12 fmol [3,5-3H]Tyr4-Ile5-angiotensin (Ang) II/mg protein, with a Kd of 0.9 +/- 0.36 nM. Binding was eliminated in cells preincubated with a monoclonal antibody (6313/G2) raised against the subtype AT1 of the Ang II receptor. Freshly seeded HUVECs were positive for 6313/G2 antibody by immunocytochemistry, and such immunoreactivity was still retained at passage 4. Incubation of HUVECs for 20 min with different concentrations of Ang II provoked a significant increment in Na+/K+ ATPase activity compared with controls, in a dose- and time-dependent manner. Maximal response was obtained with 1000 pM Ang II after 20 min stimulation and resulted in a 2.2-fold increment in Na+/K+ ATPase activity. This stimulation was abolished when cells were incubated with 1000 pM Ang II in the presence of 1 microM of the specific AT1 subtype inhibitor, DuP753. Moreover, preincubation of HUVECs with 6313/G2 or with 1 mM dithiothreitol also inhibited the stimulatory effect of Ang II. These results suggest that the AT1 receptor subtype mediates the Na+/K+ ATPase response to Ang II in these cells.


2001 ◽  
Vol 357 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Marc A. LAFLEUR ◽  
Morley D. HOLLENBERG ◽  
Susan J. ATKINSON ◽  
Vera KNÄUPER ◽  
Gillian MURPHY ◽  
...  

Thrombin, a critical enzyme in the coagulation cascade, has also been associated with angiogenesis and activation of the zymogen form of matrix metalloproteinase-2 (MMP-2 or gelatinase-A). We show that thrombin activated pro-MMP-2 in a dose- and time-dependent manner in cultured human umbilical-vein endothelial cells (HUVECs) to generate a catalytically active 63kDa protein that accumulated as the predominant form in the conditioned medium. This 63kDa thrombin-activated MMP-2 is distinct from the 62kDa species found following concanavalin A or PMA stimulated pro-MMP-2 activation. Hirudin and leupeptin blocked thrombin-induced pro-MMP-2 activation, demonstrating that the proteolytic activity of thrombin is essential. However, activation was also dependent upon membrane-type-MMP (MT-MMP) action, since it was blocked by EDTA, o-phenanthroline, hydroxamate metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-4, but not TIMP-1. Thrombin inefficiently cleaved recombinant 72kDa pro-MMP-2, but efficiently cleaved the 64kDa MT-MMP-processed intermediate form in the presence of cells. Thrombin also rapidly (within 1h) increased cellular MT-MMP activity, and at longer time points (>6h) it increased expression of MT1-MMP mRNA and protein. Thus signalling via proteinase-activated receptors (PARs) may play a role in thrombin-induced MMP-2 activation, though this does not appear to involve PAR1, PAR2, or PAR4 in HUVECs. These results indicate that in HUVECs the activation of pro-MMP-2 by thrombin involves increased MT-MMP activity and preferential cleavage of the MT-MMP-processed 64kDa MMP-2 form in the presence of cells. The integration of these proteinase systems in the vascular endothelium may be important during thrombogenesis and tissue remodelling associated with neovascularization.


2016 ◽  
Vol 71 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Mi Hwa Park ◽  
Jae-Won Ju ◽  
Mihyang Kim ◽  
Ji-Sook Han

AbstractEndothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.


2017 ◽  
Vol 41 (4) ◽  
pp. 1346-1359 ◽  
Author(s):  
Li Ju ◽  
Zhiwen Zhou ◽  
Bo Jiang ◽  
Yue Lou ◽  
Xirong Guo

Background/Aims: Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Methods: Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Results: Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. Conclusions: We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases.


2020 ◽  
Author(s):  
Yuanqing Sun ◽  
Zifeng Xu ◽  
Tao Xu ◽  
Hui Xu

Abstract Background Sevoflurane is a commonly used inhalation anesthesia and is famous for rapid onset of action, less metabolism in vivo and fast recovery. The aim of this study is to elaborate whether sevoflurane inhibits Human umbilical vein endothelial cells (HUVECs) migration function.Methods In vitro experiments, the HUVECs were divided into four groups randomly, and were exposed to 2% sevoflurane, refer to 1.6 minimal alveolar concentration (MAC), respectively for 0.5h, 1h, 2h and the first group was the control group which exposed to the same gas environment with other three groups but only without sevoflurane. After sevoflurane exposure, HUVECs were conducted the scratch assay.Results The results suggested that the HUVECs exposed to 2% sevoflurane for 2 h were more obviously inhibited on the migration distance during 12 h after scratched than the control group. Quantitative PCR results suggested that the HUVECs exposed to 2% sevoflurane for 2 h expressed more vascular endothelial cadherin (VE-cadherin) than the control group, with statistic difference. However, other scratch assay and quantitative trials suggested that the HUVECs which were transfected with VE-cadherin siRNA and exposed to 2% sevoflurane for 2 h had no significant difference with the control group on the migration distance and the expression of VE-cadherin.Conclusion These results suggested that sevoflurane inhibited the HUVECs migration function by up-regulating VE-cadherin expression, and may have an adverse effect on the normal functions of vascular endothelial cells.


Pharmacology ◽  
2018 ◽  
Vol 103 (1-2) ◽  
pp. 61-67 ◽  
Author(s):  
Li Wei ◽  
Li Li ◽  
Bin Zhang ◽  
Lin Ma

Background/Aims: To investigate the effect of propranolol on cobalt chloride (CoCl2)-induced hypoxic proliferation in human umbilical vein endothelial cells (HUVECs). Methods: CoCl2 was administrated to HUVECs to mimic hypoxic proliferation in infantile hemangioma. The proliferation of HUVECs was detected by Cell Counting Kit-8. Effects of propranolol on apoptosis and expressions of cell cycle-related genes, CDK4 and cyclin D1, were detected by flow cytometry and RT-PCR respectively. The release of vascular endothelial growth factor (VEGF) and lactate dehydrogenase (LDH) was measured by enzyme-linked immunosorbent assay. Results: Propranolol significantly inhibited the CoCl2-induced hypoxic proliferation of HUVECs in a dose-dependent manner, and also induced apoptosis and suppressed the expression of CDK4 and cyclin D1. Propranolol also decreased the release of VEGF and LDH in the supernatant. Conclusions: Propranolol could inhibit CoCl2-induced hypoxic proliferation of HUVECs through inducing apoptosis and cell cycle arrest.


PPAR Research ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jinbo Liu ◽  
Changlin Lu ◽  
Fuwang Li ◽  
Haining Wang ◽  
Liyun He ◽  
...  

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide (NO) synthase. Guanosine 5′-triphosphate cyclohydrolase-I (GTPCH-I) is a key limiting enzyme for BH4 synthesis. In the present in vitro study, we investigated whether peroxisome proliferator-activated receptorα(PPAR-α) agonist fenofibrate could recouple eNOS by reversing low-expression of intracellular BH4 in endothelial cells and discussed the potential mechanisms. After human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) for 24 hours, the levels of cellular eNOS, BH4 and cell supernatant NO were significantly reduced compared to control group. And the fluorescence intensity of intracellular ROS was significantly increased. But pretreated with fenofibrate (10 umol/L) for 2 hours before cells were induced by LPS, the levels of eNOS, NO, and BH4 were significantly raised compared to LPS treatment alone. ROS production was markedly reduced in fenofibrate group than LPS group. In addition, our results showed that the level of intracellular GTPCH-I detected by western blot was increased in a concentration-dependent manner after being treated with fenofibrate. These results suggested that fenofibrate might help protect endothelial function and against atherosclerosis by increasing level of BH4 and decreasing production of ROS through upregulating the level of intracellular GTPCH-I.


2021 ◽  
pp. 1-10
Author(s):  
Jiankun Cui ◽  
Bo Zhang ◽  
Min Gao ◽  
Baohai Liu ◽  
Cong Dai ◽  
...  

Endothelial dysfunction plays a central role in the patho­genesis of diabetic vascular complications. 2,3,5,4′-tetra­hydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the roots of Polygonum multiflorum Thunb, has been shown to have strong antioxidant and antiapoptotic activities. In the present study, we investigated the protective effect of TSG on apoptosis induced by high glucose in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms. Our data demonstrated that TSG significantly reversed the high glucose-induced decrease in cell viability, suppressed high glucose-induced generation of intracellular reactive oxygen species (ROS), the activity of caspase-3, and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, we found that TSG not only increased the expression of Bcl-2, while decreasing Bax expression, but also activated phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) with subsequent nitric oxide production and ultimately reduced high glucose-induced apoptosis. However, the antiapoptotic effects of TSG were abrogated by pretreatment of the cells with PI3K inhibitor (LY294002) or eNOS inhibitor N<sup>G</sup>-L-nitro-arginine methyl ester, respectively. These results suggest that TSG inhibits high glucose-induced apoptosis in HUVECs through inhibition of ROS production, activation of the PI3K/Akt/eNOS pathway, and upregulation of the Bcl-2/Bax ratio, and thus may demonstrate significant potential for preventing diabetic cardiovascular complications.


1992 ◽  
Vol 67 (03) ◽  
pp. 331-334 ◽  
Author(s):  
Haruhiko Sago ◽  
Kazuso linuma

SummaryWe quantified thrombin-induced endothelial cells shape change and investigated the role of Ca2+ in such shape change. We used the fluorescent Ca2+ indicator, fura2, to measure both shape change as cell size and intracellular free Ca2+ ([Ca2+]i), in cultured human umbilical-vein endothelial cells (HUVEC). Thrombin induced concentration-dependent decreases in cell size (percentage of cell size at 6 min after stimulation with 0.01 U/ml, 0.1 U/ml, or 1 U/ml thrombin) was 90.1 ± 1.5%, 78.1 ± 2.4%, and 40.9 ± 2.4%, respectively. Thrombin also increased [Ca2+]i in a concentration-dependent manner. Both depletion of extracellular Ca2+, and also the addition of W5, a calmodulin antagonist, inhibited thrombin-induced size reduction. These results indicate an association between shape change and [Ca2+]i mobilization in human endothelial cells stimulated by thrombin.


Sign in / Sign up

Export Citation Format

Share Document