scholarly journals Isolation of bioactive substance from pure mumie

2014 ◽  
Vol 11 (2) ◽  
pp. 33-35
Author(s):  
T Enkh-Oyun ◽  
Ts Tsatsralt ◽  
J Bayarmaa

Mumie contains humid and fulvic acids. For this study, pure mumie was fractionated into fulvic acid (FA) and humic acid (HA) fractions. Humic and Fulvic Acids are highly active bioregulators, and also they contain both macro- and micro-nutrients needed by human and animal bodies. Mumie is stone like material found in Mongolia at higher altitude, which has various medical applications in Mongolia and other Asian countries [2,3]. In the present study, the biological activity of mumie and its fractions was measured. Fractions were prepared according to the protocol described by I. A. Scheretkin and A.I. Khlebnikov. Both humic and fulvic acids can be obtained with the yields of 5.3% and 18.6 % respectively DOI: http://dx.doi.org/10.5564/mjas.v11i2.213 Mongolian Journal of Agricultural Sciences Vol.11(2) 2013 pp.33-35

2014 ◽  
Author(s):  
◽  
Pinkie Sobantu

This project arose out the need for a simple method to analyse NOM on a routine basis. Water samples were obtained from the Vaal dam, which is one of the dams used by a hydroelectric power station. Analysis was preceded by separation of NOM into the humic and non-humic portions. The humic portion was separated into two fractions by employing a non-ionic resin (DAX-8) to separate humic acid from fulvic acid. High performance size exclusion chromatography (HPSEC), equipped with an Ultraviolet( UV) detector and an Evaporative Light Scattering (ELS) detector connected in series, was used to obtain molecular weight distribution information and the concentration levels of the two acids. Mixed standards of polyethylene oxide/glycol were employed to calibrate the selected column. Suwanee River humic acid standard was used as a certified reference material. The molecular weight distributions (MWDs) of the isolated fractions of humic and fulvic acids were determined with ELSD detection as weight-average (Mw), number-average (Mn) and polydispersity (ρ) of individual NOM fractions. The Mw/Mn ratio was found to be less than 1.5 in all the fractions, indicating that they have a low and narrow size fraction. An increase in Mn and Mw values, with increasing wavelength for all three humic substances (HS) examined was observed. The HS, isolated from the dam water, was found to be about the same molecular weight as the International Humic Acid Standard (IIHSS). For the fulvic acid standard, the molecular weight was estimated to be around 7500 Da. Characterization of NOM was done to assist in the identification of the species present in the water. FTIR-ATR was used to as a characterization tool to identify the functional groups in the structure of the humic and fulvic acid respectively present in the Vaal Dam. Analysis of the infrared (IR) spectra indicated that the humic acids of the Vaal dam have phenolic hydroxyl groups, hydroxyl groups, conjugated double bond of aromatic family (C=C), and free carboxyl groups. The isolation method has proved to be applicable and reliable for dam water samples and showed to successfully separate the humic substances from water and further separate the humic substances into its hydrophobic acids, namely, humic and fulvic acids. It can be concluded that the Eskom Vaal dam composes of humic substance which shows that the technique alone gives a very good indication of the characteristics of water. The HPSEC method used, equipped with UV and ELSD was able to identify the molecular weight range of NOM present in source water as it confirmed that the Eskom Vaal dam contains humic substances as humic acid and fulvic acid and these pose a health concern as they can form disinfectant byproducts in the course of water treatment with chemicals. FTIR characterization was successful as important functional groups were clearly assigned. Lastly, the use of the TOC and DOC values to calculate SUVA was also a good tool to indicate the organic content in water. It is recommended to use larger amounts of water must be processed to obtain useful quantities of the humic and fulvic acid fractions.


2000 ◽  
Vol 88 (6) ◽  
Author(s):  
J.J. Lenhart ◽  
S.E. Cabaniss ◽  
P. MacCarthy ◽  
Bruce D. Honeyman

The binding of uranium(VI) by Suwannee River humic and fulvic acids was studied at pH values of 4.0 and 5.0 in 0.10 M NaClOBoth humic and fulvic acids were demonstrated to strongly bind U(VI), with humic acid forming slightly stronger complexes and exhibiting greater pH dependence. Analyses of the data for the humic and fulvic acid systems using the Schubert´s equation previously applied to the citrate system result in an apparent nonintegral number of ligands binding the uranyl ion. Schubert´s method is only appropriate for interpreting mononuclear complexes with integral moles of binding ligands. Thus, a more elaborate binding model was required and the data were interpreted assuming either: (1) a mixture of 1:1 and 1:2 uranyl-ligand complexes or (2) a limited number of high affinity sites forming a 1:1 complex. While both of these modeling approaches are shown to provide excellent fits to the data, the second is deemed more appropriate given the large size of humic and fulvic acid molecules as well as previous results obtained with other metal cations, such as Cu(II).


2021 ◽  
Author(s):  
Milanka Radulovic ◽  
◽  
Svetlana Mitrovski

Peat is a natural substrate for growth of microorganisms because it is rich in compounds that microorganisms can use as sources of carbon, nitrogen and growth factors. Peat originating from Vlasina lake in Eastern Serbia is especially rich in organic matter. The content of humic substances (humic acid, fulvic acid and humine) is almost twice that found in other peat-rich regions of similar origin and geochemical age. Humic and fluvic acids are known to promote microbial growth. In this work, humic and fulvic acids were first extracted from Vlasina lake peat and then added to minimal medium (synthetic, low ionic strength medium). The humic substances were added separately and combined in a 1:1 ratio by mass to study their individual and combined effect on microbial growth of Escherichia coli ATCC 25922 (Gr–), Staphyloccocus aureus (Gr+) i Aureobasidium pullulans, strain CH-1. The microbial growth was measured microspectrophotometrically over a 24-hour period and growth curves were obtained for a range of acid concentrations between 25 µg cm-3 and 100 µg cm-3. It was found that both humic and fulvic acids promote the growth of all three microorganisms by up to a maximum of 40%-80% the extent of which varied with the concentration of the acid and the identity of the microorganism. In general, humic acid was found to result in higher microbial growth (at highest concentrations, up to ~80% for all three microbial species).


1967 ◽  
Vol 47 (3) ◽  
pp. 245-250 ◽  
Author(s):  
M. Schnitzer

Twenty organic-soil samples of widely differing degrees of decomposition were extracted with 0.5 N NaOH solution under N2. Amounts of humic and of fulvic acids in the acidified extracts did not correlate significantly with pyrophosphate solubilities. This was thought to be due to interference in the separation scheme by relatively large amounts of ash constituents in the extracts. Since the "classical" fractionation of soil organic matter appears to involve essentially the "salting out" of higher molecular-weight humic from lower molecular-weight fulvic acids, an excessively high salt concentration during the separation should be avoided.To lower the concentration of inorganic constituents in the extracts, the samples were first pretreated with dilute HCl–HF solution and then extracted with 0.1 N NaOH rather than with 0.5 N NaOH. Under these conditions, amounts of fulvic acids in the acidified extracts showed a significant positive correlation (r = 0.52) with pyrophosphate solubilities of untreated extracts, whereas amounts of humic acids in the extracts exhibited a highly negative correlation (r = −0.57) with pyrophosphate solubilities. In the soils examined, increased humification was associated with increases in fulvic-acid but decreases in humic-acid concentrations.From the results of this and of earlier investigations done in this laboratory it appeared that the main mechanism governing humification in these soils was oxidative degradation, resulting ultimately in the formation of fulvic from humic acid.


Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol


1985 ◽  
Vol 17 (4-5) ◽  
pp. 665-679 ◽  
Author(s):  
M. D. Sobsey ◽  
T. Cromeans ◽  
A. R. Hickey ◽  
J. S. Glass

Model enteric viruses were concentrated from seeded samples of raw, finished and granular activated carbon (GAC)-treated waters and from GAC-treated waters supplemented with humic or fulvic acid or bentonite clay particles by adsorption to electropositive (Virosorb 1MDS) filters at pH 7.5 or electronegative (Filterite) filters at pH 3.5 with and without 5 mM added MgCl2, followed by elution with 0.3% beef extract in 50 mM glycine at pH 9.5. Natural particulates in raw and finished waters had little effect on virus concentration efficiencies. Soluble organic compounds reduced virus adsorption efficiencies from both raw and finished waters compared to GAC-treated water, but the extent of interference varied with virus type and adsorption conditions. Humic and fulvic acids caused appreciable reductions in poliovirus adsorption and recovery efficiencies with both types of filters. Fulvic acid caused greater reductions in virus recovery with Virosorb 1MDS filters than with Filterite filters. Fulvic acid interference with virus recovery by Filterite filters was overcome by the presence of 5 mM MgCl2. Although humic acid reduced virus recoveries by both types of filters, its greatest effect was on virus elution and recovery from Filterite filters. Bentonite clay enhanced poliovirus retention by both filter types as much as 8-fold. However, the presence of clay often interfered with elution of retained viruses from both filter types. Under some conditions, overall virus recoveries were considerably lower from water with clay than from clay-free control water. The results of this study suggest that high concentrations of soluble organic matter such as humic and fulvic acids and suspended solids such as bentonite clay may interfere somewhat with virus recovery by filter adsorption-elution methods.


2018 ◽  
Vol 69 (4) ◽  
pp. 234-242 ◽  
Author(s):  
Monika Mierzwa-Hersztek ◽  
Krzysztof Gondek ◽  
Michał Kopeć ◽  
Aleksandra Ukalska-Jaruga

Abstract Due to the indisputable significance of humus in many biochemical processes as well as its increasing deficit particularly in light soils, alternative sources of substrates for the reproduction of this constituent should be sought. The aim of this study was to evaluate the effect of the addition of wheat straw and wheat straw biochar (in four rates) on quantitative and qualitative humus parameters. The following properties were determined in soil: pH, organic carbon, total nitrogen, humic and fulvic acids, carbon in the extract, non-hydrolysing carbon and spectrophotometric indexes for solution of humic acids including A2/6, A2/4, A4/6. After applying 1% and 2% additions of biochar to the soil, the Corg soil content significantly increased compared to the same doses of thermally unconverted straw. After 254 days of incubation, the addition of biochar to soil at higher doses, decreased the share of humic acid carbon (CHA, CFA) in the Corg content compared to treatments without organic additions and WS treatment. The nonhydrolysing carbon soil content was significantly increased by treatments with 1% and 2% additions of WSB, which indicates greater stabilisation of humus compounds and, at the same time, lower CO2 emission. Soil humic acids amended by treatment with biochar, especially at 1% and 2% doses, were characterised by lower A2/6 and A2/4 ratios. Recognition of changes that may occur in the quantitative and qualitative composition of soil humus after the application of biochar may in the future be helpful information for determining appropriate biochar dose.


1967 ◽  
Vol 47 (2) ◽  
pp. 111-116 ◽  
Author(s):  
F. J. Sowden ◽  
M. Schnitzer

Organic matter (O.M.) was extracted with 0.5 N NaOH under N2, from samples of the Bh horizon of a Podzol soil. The NaOH-soluble O.M. from one sample was partitioned into "classical" humic and fulvic acids. The O.M. extracted from other samples was passed over an H-resin and purified fulvic acid" was prepared from the eluate. The O.M. retained on the resin was eluted with base. After hydrolysis a sample of the original soil the NaOH-insoluble residue and the various O.M. preparations were analyzed for amino acids, amino sugars and ammonia.Eighty percent of the amino acids in the original soil were accounted for in the NaOH-insoluble residue plus the purified fulvic acid and the NH4OH eluate. Most of the soil amino acids were recovered in the NaOH-insoluble residue plus classical humic plus classical fulvic acid fractions. Qualitatively, the amino acid distribution in all fractions was similar to the distribution or amino acids in an "average" protein. Amounts of amino sugars were small consisting of two-thirds glucosamine and one-third galactosamine. Recoveries of amino sugars were low, possibly due to the effect of alkali.Slightly more than 50% of the soil-N was accounted for as amino acids plus NH3 plus amino sugars. The behavior of the fraction on the exchange resin suggested that the organic C- organic N-system extracted from the soil was not uniform, and that at least portions of the ammo acids and amino sugars were either adsorbed on or physically mixed with organic matter.


2003 ◽  
Vol 47 (9) ◽  
pp. 77-84 ◽  
Author(s):  
H. Yamamoto ◽  
H.M. Liljestrand

In this study, sorption of some estrogens and estrogenic compounds onto several organic colloids was examined using fluorescence quenching techniques. Selected organic colloids included humic substances of several sources, Aldrich humic acid (AHA), Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and Nordic fulvic acid (NFA). Polysaccharides, alginic acid (AA) and dextran (Dex), and tannic acid (TA) were also selected. 17β-estradiol (E2), 17α-ethynylestradiol (EES), and estriol (E3) were selected as estrogens. Nonylphenol (NP), octylphenol (OP), and dibutylphthalate (DBP) were selected as estrogenic compounds. For most of the selected compounds, the sorption coefficients were in the order of TA > humic acids (SRHA or AHA) > fulvic acids (NFA or SRFA) > AA. The smallest or no significant sorption onto dextran was found for selected estrogens and estrogenic compounds. Comparing those compounds, neither a significant trend nor linear correlation with Log Kow was found. The resulting sorption coefficients for humic substances and TA suggested approximately 15 to 50% of the estrogens and estrogenic compounds were bound in typical natural water of 5 mgTOC/L and significant effects on the removal of them by water treatment processes, toxicity, or bioavailability were suggested.


Sign in / Sign up

Export Citation Format

Share Document