Identifying the Drivers of PM2.5 Concentration Changes between December 2019 and December 2020 in South Korea

2021 ◽  
Vol 37 (3) ◽  
pp. 371-387
Author(s):  
Soontae Kim ◽  
Minah Bae ◽  
Eunhye Kim ◽  
Kyuwon Son ◽  
Yoon-Hee Kang ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 887
Author(s):  
Jung-Woo Yoo ◽  
Wonbae Jeon ◽  
Hwa Woon Lee ◽  
Jeonghyeok Mun ◽  
Soon-Hwan Lee ◽  
...  

This study examined the impact of foreign SO2 emission changes on the aerosol direct radiative effects (ADRE) in South Korea. Simulations that applied basic emissions (BASE) and simulations that applied reduced SO2 emissions from foreign sources (R_FSO2) were performed, respectively, using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) two-way coupled model. In addition, the difference between the two experimental results was calculated (i.e., R_FSO2 minus BASE) to quantitatively identify the impact of foreign SO2 emission reduction. The reduction in foreign SO2 emissions caused a decrease in the concentration of SO2 flowing in from overseas to South Korea. As a result, a clear decrease in SO42− concentration was shown mainly in the southwest coast of South Korea. The difference in PM2.5 concentration in South Korea according to the foreign SO2 emission reduction did not correspond to the difference in SO42− concentration; it was determined in a complex way by the changes in SO42− concentration caused by SO2 concentration changes, and the subsequent series of changes in NO3− and NH4+ concentrations. The differences in SO42− and PM2.5 concentrations caused by the foreign SO2 reduction also affected the ADRE changes in South Korea. The distribution of ADRE difference between the two experiments was not consistent with the distribution of PM2.5 concentration difference, but it was very similar to the distribution of SO42− concentration difference. These results imply that the ADRE of South Korea is not simply proportional to PM2.5 concentration and may be determined by concentration changes of SO42−.


2020 ◽  
Vol 36 (4) ◽  
pp. 442-463
Author(s):  
Kyuwon Son ◽  
Minah Bae ◽  
Seunghee You ◽  
Eunhye Kim ◽  
Yoon-Hee Kang ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 469-485 ◽  
Author(s):  
Eunhye Kim ◽  
Changhan Bae ◽  
Chul Yoo ◽  
Byeong-Uk Kim ◽  
Hyun Cheol Kim ◽  
...  

Author(s):  
Yazhu Wang ◽  
Xuejun Duan ◽  
Lei Wang

PM2.5 is a main source of China’s frequent air pollution. Using real-time monitoring of PM2.5 data in 338 Chinese cities during 2014–2017, this study employed multi-temporal and multi-spatial scale statistical analysis to reveal the temporal and spatial characteristics of PM2.5 patterns and a spatial econometric model to quantify the socio-economic driving factors of PM2.5 concentration changes. The results are as follows: (1) The annual average value of PM2.5 concentration decreased year by year and the monthly average showed a U-shaped curve from January to December. The daily mean value of PM2.5 concentration had the characteristics of pulse-type fluctuation and the hourly variation presented a bimodal curve. (2) During 2014–2017, the overall PM2.5 pollution reduced significantly, but that of more than two-thirds of cities still exceeded the standard value (35 μg/m3) regulated by Chinese government. PM2.5 pollution patterns showed high values in central and eastern Chinese cities and low values in peripheral areas, with the distinction evident along the same line that delineates China’s uneven population distribution. (3) Population agglomeration, industrial development, foreign investment, transportation, and pollution emissions contributed to the increase of PM2.5 concentration. Urban population density contributed most significantly while economic development and technological progress reduced PM2.5 concentration. The results also suggest that China in general remains a “pollution shelter” for foreign-funded enterprises.


Author(s):  
Beom-Soon Han ◽  
Kyeongjoo Park ◽  
Kyung-Hwan Kwak ◽  
Seung-Bu Park ◽  
Han-Gyul Jin ◽  
...  

Seoul, the most populous city in South Korea, has been practicing social distancing to slow down the spread of coronavirus disease 2019 (COVID-19). Fine particulate matter (PM2.5) and other air pollutants measured in Seoul over the two 30 day periods before and after the start of social distancing are analyzed to assess the change in air quality during the period of social distancing. The 30 day mean PM2.5 concentration decreased by 10.4% in 2020, which is contrasted with an average increase of 23.7% over the corresponding periods in the previous 5 years. The PM2.5 concentration decrease was city-wide and more prominent during daytime than at nighttime. The concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) decreased by 16.9% and 16.4%, respectively. These results show that social distancing, a weaker forcing toward reduced human activity than a strict lockdown, can help lower pollutant emissions. At the same time, synoptic conditions and the decrease in aerosol optical depth over the regions to the west of Seoul support that the change in Seoul’s air quality during the COVID-19 social distancing can be interpreted as having been affected by reductions in the long-range transport of air pollutants as well as local emission reductions.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 756 ◽  
Author(s):  
Daegyun Lee ◽  
Jin-Young Choi ◽  
Jisu Myoung ◽  
Okgil Kim ◽  
Jihoon Park ◽  
...  

In this study, domestic and foreign contributions to a severe PM2.5 episode in South Korea, in which “emergency reduction measures against particulate matter” were issued, were analyzed. During the period between 27 February and 7 March in 2019 when high PM2.5 concentrations occurred, the PM2.5 concentration in the Seoul metropolitan area (SMA) in South Korea was approximately 87.3 μg/m3 on average, and a severe PM2.5 concentration level of approximately 113.4 μg/m3 was observed between 3 March and 5 March. The results of the analysis conducted using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model and meteorological observation data showed that northwesterly wind or westerly winds were formed during the P1 and P3 periods when the PM2.5 concentration markedly increased. When the PM2.5 concentrations in East Asia were simulated using the Community Multiscale Air Quality (CMAQ), it was found that the high PM2.5 concentrations that occurred in the SMA of South Korea were mostly affected by PM2.5 transported over long distances and following atmospheric stagnation. When the domestic and foreign contributions were evaluated using the brute-force method (BFM), the foreign and domestic contribution concentrations were found to be 62.8 and 16.8 μg/m3, respectively, during the target period of this study. It was also found that the foreign contribution was 78.8%, while the domestic contribution was 21.2%.


Author(s):  
Kyung-Hwan Kwak ◽  
Beom-Soon Han ◽  
Kyeongjoo Park ◽  
Sungju Moon ◽  
Han-Gyul Jin ◽  
...  

AbstractThe COVID-19 pandemic has prompted governments around the world to impose mitigation strategies of unprecedented scales, typically involving some form of restrictions on social activities and transportation. The South Korean government has been recommending a collection of guidelines now known as social distancing, leading to reduced human activities. This study analyzes changes in the concentrations of fine particulate matter (PM2.5) during the 30-day periods before and since the start of social distancing on 29 February 2020 using measurement data from air quality monitoring stations at various locations of the seven major cities of South Korea, namely, Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, and Ulsan. All seven cities experienced decreased levels of PM2.5 concentration by up to 25% and smaller fluctuations during the period of social distancing. Inter-city comparisons show that the PM2.5 concentration changes are positively correlated with the city-wide PM2.5 emission fractions for mobile sources and negatively correlated with the city-wide PM2.5 emission fractions for combustion and industrial process sources. In addition, the meteorological influences favorable for transboundary pollutant transport have weakened during the period under COVID-19 social distancing. Intra-city comparisons show that decreases in the intra-city variability of PM2.5 concentration were larger in coastal cities than in inland cities. Comparisons between the inter- and intra-city variabilities in the PM2.5 concentration changes under social distancing highlight the importance of taking into account intra-city variabilities in addition to inter-city variabilities.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 832
Author(s):  
Sung-Won Park ◽  
Su-Yeon Choi ◽  
Jin-Yeo Byun ◽  
Hekap Kim ◽  
Woo-Jin Kim ◽  
...  

Chuncheon, a medium-sized city in South Korea, frequently shows high PM2.5 concentrations despite scarce anthropogenic emission sources. To identify factors increasing PM2.5 concentrations, PM2.5 and its major chemical components were concurrently measured at two different sites, namely, downtown and suburban areas. The average PM2.5 concentrations at the two sites were similar, but the daily and monthly variations in PM2.5 and its components were significantly larger at the suburban site. NH4+ was significantly higher at the suburban site than at the downtown site, whereas organic carbon (OC) showed the opposite trend. Several PM2.5 samples showed an abrupt increase during winter at the suburban site, along with an increase in the amount of OC, NH4+, and K+, and the correlations between water-soluble OC, K+, and NH4+ were considerably strong, implying that local biomass burning in the suburban site was an important source of high PM2.5 episodes. Secondary OC (SOC) concentration was generally lower at the suburban site than at the downtown site, but its contribution to OC increased during winter with an increase in relative humidity, indicating the significance of heterogeneous SOC formation reactions at the suburban site. These results indicate that relevant local measures can be put into place to alleviate the occurrence of high PM2.5 concentration episodes even in medium-sized residential cities where medium-and long-range transport is anticipated to be significant.


2021 ◽  
Vol 21 (20) ◽  
pp. 16051-16065
Author(s):  
Yuqiang Zhang ◽  
Drew Shindell ◽  
Karl Seltzer ◽  
Lu Shen ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. China has experienced dramatic changes in emissions since 2010, which accelerated following the implementation of the Clean Air Action program in 2013. These changes have resulted in significant air quality improvements that are reflected in observations from both surface networks and satellite observations. Air pollutants, such as PM2.5, surface ozone, and their precursors, have long enough lifetimes in the troposphere to be easily transported downwind. Emission changes in China will thus not only change the domestic air quality but will also affect the air quality in other regions. In this study, we use a global chemistry transport model (CAM-chem) to simulate the influence of Chinese emission changes from 2010 to 2017 on both domestic and foreign air quality. We then quantify the changes in air-pollution-associated (including both PM2.5 and O3) premature mortality burdens at regional and global scales. Within our simulation period, the population-weighted annual PM2.5 concentration in China peaks in 2011 (94.1 µg m−3) and decreases to 69.8 µg m−3 by 2017. These estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observations. Relative to 2010, emission changes in China increased the global PM2.5-associated premature mortality burdens through 2013, among which a majority of the changes (∼ 93 %) occurred in China. The sharp emission decreases after 2013 generated significant benefits for human health. By 2017, emission changes in China reduced premature deaths associated with PM2.5 by 108 800 (92 800–124 800) deaths per year globally, relative to 2010, among which 92 % were realized in China. In contrast, the population-weighted, annually averaged maximum daily 8 h ozone concentration peaked in 2014 and did not reach 2010 levels by 2017. As such, O3 generated nearly 8500 (6500–9900) more premature deaths per year in 2017 compared to 2010. Downwind regions, such as South Korea, Japan, and the United States, generally experienced O3 improvements following 2013 due to the decreased export of ozone and its precursors. Overall, we conclude that the sharp emission reductions in China over the past decade have generated substantial benefits for air quality that have reduced premature deaths associated with air pollution at a global scale.


Sign in / Sign up

Export Citation Format

Share Document