Assessment of NO Reduction using TiO2 in Large-Scale Smog Chamber

2021 ◽  
Vol 37 (6) ◽  
pp. 946-955
Author(s):  
Moonsu Kim ◽  
Taehyun Park ◽  
Jong Won Lee ◽  
Sang Hyuk Lee ◽  
Myoungki Song ◽  
...  
2021 ◽  
Vol 102 ◽  
pp. 185-197
Author(s):  
Junling Li ◽  
Hong Li ◽  
Xuezhong Wang ◽  
Weigang Wang ◽  
Maofa Ge ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 394
Author(s):  
Md. Hasan Zahir ◽  
Mohammad Mominur Rahman ◽  
Md Shafiullah ◽  
Mohammad Mizanur Rahman ◽  
Amjad Ali ◽  
...  

In this work, single-crystalline large-scale LaCO3OH nanoprism morphologies were synthesized by controlling La and Ca molar ratio and the hydrothermal reaction conditions. The nanoprism morphologies of LaCO3OH were unique in nature with a sharp corner and smooth surfaces. The hydrothermal reaction was carried out in the absence of organic additives or templates and (NH4)2CO3 was used as a precipitation agent. The molar ratio of La:Ca was varied over the following values (the sample shorthand is given in parentheses): 75:25 mol% (LC-1), 50:50 mol% (LC-2), and 25:75 mol% (LC-3). Phase-pure LaCO3OH nanoprisms formed at a La:Ca molar ratio of 75:25 mol% without any assistance of catalysts or template. The photoluminescence (PL) properties of the as-synthesized powders showed one broad emission band centered at 394 nm after excitation of the pure LC-3 LaCO3OH nanoprisms at λ = 280 nm. The PL intensities were decreased in the order of LC-1 < LC-2< LC-3. The LC-1 and LC-2 samples had almost the same PL intensities probably due to their unique and smooth particle morphology. The calcination result of three samples treated for two hours at 800 °C, shows a reduction in NO activities over highly distributed CaO comprising La2O3. Further, under the presence of H2O and O2 vapor, CaO comprising La2O3 catalysts shows higher stability for the reduction of NO with CH4.


2013 ◽  
Vol 6 (3) ◽  
pp. 5751-5794
Author(s):  
X. Pang ◽  
A. C. Lewis ◽  
A. Richard ◽  
M. T. Baeza-Romero ◽  
T. J. Adams ◽  
...  

Abstract. A microfluidic lab-on-a-chip derivatization technique has been developed to measure part per billion volume (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method compared with other techniques in a smog chamber experiment. The method uses o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatization reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor result in a fast and highly efficient derivatization reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatized under optimal reaction conditions. The method detection limits (MDLs) were 80 pptV and 200 pptV for GLY and MGLY respectively, calculated as 3 times the standard deviation of the S/N of the blank sample chromatograms. These MDLs are below or close to typical concentrations in clean ambient air. The feasibility of the technique was assessed by applying the methodology under controlled conditions to quantify of α-dicarbonyls formed during the photo-oxidation of isoprene in a large scale outdoor atmospheric simulation chamber (EUPHORE). Good general agreement was seen between microfluidic measurements and Fourier Transform Infra Red (FTIR), Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) and a detailed photochemical chamber box modelling calculation for both GLY and MGLY. Less good agreement was found with Proton-Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) and Solid Phase Microextraction (SPME) derivatization methods for MGLY measurement.


2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Maria Cecília Soares

Porcine salmonellosis is of important economic and food safety importance, as it is a cause of foodinfections in humans, and is present in large scale in finishing pigs due to lymph node latency and rearingconditions. The objective of this study was to evaluate the reduction in Salmonella spp. in slaughterswine carcasses, after slaughtering under a bath with water at 80 ° C. Ninety swine carcasses wereevaluated after slaughter at four harvesting points (leg, loin, belly and double chin), before and afterbathing with water at 80 °C, in 720 samples, with quantitative analysis by the number method moreprobable. In slaughtering 43.33% (39/90) of the animals were positive before hot water applicationrepresented by 62 positive samples. After the intervention, 88.71% (55/62) of the positive sampleszeroed the counts, in seven samples there was no reduction and in 11 samples, there was positivity inpreviously negative animals. The typifications of all positives were Salmonella Typhimurium. Thesamples with the greatest reduction in the count were double chin and belly samples with a concentrationof 330 NMP / g that subsequently zeroed. Treatment with hot water bath in the carcasses was efficient,with significant difference of positivity before and after the intervention. There were cases of crosscontamination after intervention in animals that remained positive and animals negative. Intervention by bathing the carcasses after gutting with 80 ° C water reduces the Salmonella spp. count and iseconomically viable.  


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document