scholarly journals The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L.) grown under different tillage systems on the germination of its seeds

2012 ◽  
Vol 64 (1) ◽  
pp. 79-90
Author(s):  
Piotr Kraska

The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass) and stubble crops (lacy phacelia, white mustard). Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which plough tillage and conservation tillage with spring disking of the catch crops had been used. The type of catch crop used did not have a significant effect on the soil content of these compounds. At the same time, it was found that the treatments in which the catch crops had been sown tended to have higher contents of these compounds compared to the plots without catch crops.

2012 ◽  
Vol 65 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Piotr Kraska ◽  
Elżbieta Mielniczuk

The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus <i>Fusarium</i>, with <i>F. culmorum</i> being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus <i>Bipolaris sorokiniana</i> was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of <i>F. culmorum</i>, both on the stem base and roots of spring wheat.


1986 ◽  
Vol 66 (1) ◽  
pp. 181-184 ◽  
Author(s):  
S. J. CARLSON ◽  
L. A. MORROW

Triallate granules were applied at 2.8 kg/ha without incorporation either immediately before or after planting into standing spring wheat (Triticum aestivum L. ’Fielder’ and ’Dirkwin’) stubble. The triallate granules controlled wild oat (Avena fatua L.), and resulted in increased spring wheat yield. Difenzoquat or diclofop-methyl application also increased wheat yields.Key words: Triallate, oat (wild), conservation tillage, minimum tillage, wheat (spring)


2001 ◽  
Vol 81 (1) ◽  
pp. 93-102 ◽  
Author(s):  
M J Garand ◽  
R R Simard ◽  
A F MacKenzie ◽  
C. Hamel

Although there is a potential to substantially reduce N fertiliser inputs by cropping spring cereals with an interseeded legume, the agronomic value and the nitrate catch-crop effect associated with this practice are not documented under the conditions of eastern Canada. This 3-yr study estimated N credits and non-N nutritional effects for interseeded clover (Trifolium pratense L. 'Arlington') in spring wheat production (Triticum aestivum L. 'Algot') and assessed fall and spring nitrate (NO3−) in soil. The soil is a St. Urbain clay (Orthic Gleysol) located in the St. Lawrence lowlands. Ammonium nitrate (NH4NO3) was applied at 0, 40, 80, 120 and 160 kg N ha-1 with or without red clover as a companion crop. Clover was incorporated as a green manure crop in mid-November. Clover significantly (P = 0.05) influenced wheat yield response to N fertilisation for 2 of the 3 yr. Clover did not reduce wheat grain yield through competition between the two plant species. Higher wheat yields with clover were attributed to N supplied by clover through mineralisation of residues incorporated in the soil the previous fall. Nitrogen fertiliser replacement value of clover was approximately 80 kg N ha-1 for 1994 and 1995. Clover occasionally increased NO3−-N measured in the soil profile in late fall and in spring. Interseeded red clover may provide most of the N needs of a companion spring wheat crop in fine-textured gleysolic soils, but is an inefficient N catch-crop. Key words: N credits, non-N nutritional effect, N catch-crop


2002 ◽  
Vol 82 (4) ◽  
pp. 653-659 ◽  
Author(s):  
H. G. Nass ◽  
Y. Papadopolous ◽  
J. A. MacLeod ◽  
C. D. Caldwell ◽  
D. F. Walker

The benefits of underseeding cereals with legumes and grasses have been established. However, research is required to determine the effects of underseeding spring wheat with red clover on yield and milling quality. The objectives of this study were: (1) to determine the rates of supplemental N required to obtain 13.5% or greater grain protein of three spring milling wheat (Triticum aestivum L. em Thell.) cultivars underseeded to red clover (Trifolium pratense L.); (2) to determine the effect of supplemental N on establishment of red clover , and (3) to relate the N status of the soil after harvest to grain protein. Field experiments were conducted from 1998 to 2000 on three sites: Hartland, New Brunswick; Truro, Nova Scotia; and Harrington, Prince Edward Island. Grain yield and protein content increased with increasing amounts of supplemental N. In most years, supplemental N above a base application of 55 kg N ha-1 applied at 52.5 kg N ha-1 at Zadoks GS 30 resulted in 13.5% protein in the grain of Grandin and AC Barrie, but 70 kg N ha-1 was r equired for AC Walton. Based on the N content of the straw, Grandin was less effective in partitioning N into the grain than AC Barrie and AC Walton. Increasing rates of supplemental N caused a reduction in red clover establishment. Soil pH decreased with increasing rates of supplemental N. Nitrate N in the soil at 0–5 and 0–20 cm depths increased with supplemental N, but there was no effect on ammonium N. Differences in pH or levels of soil N after harvest did not account for differences in grain protein. In the Maritime provinces, to reach a desirable milling protein level in spring wheat of 13.5%, producers will need to add supplemental N at a rate of at least 100 kg N ha-1 over and above background levels; however, this will be at the risk of reducing red clover establishment and increasing levels of soil N available for leaching. Key words: Spring wheat, Triticum aestivum, red clover, Trifolium pratense, underseeding, protein, nitrogen


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yuliia Kochiieru ◽  
Audronė Mankevičienė ◽  
Jurgita Cesevičienė ◽  
Roma Semaškienė ◽  
Jūratė Ramanauskienė ◽  
...  

In this work, we studied the impact of harvesting time on Fusarium mycotoxin occurrence in spring wheat and the effect of mycotoxin contamination on the quality of these grains. The spring wheat grains (Triticum aestivum L.) were collected in 2016–2018 when the crop had reached full maturity, 10 ± 2 days and 17 ± 3 days after full maturity. The grain samples were analyzed for Fusarium infection and co-contamination with mycotoxins deoxynivalenol (DON), zearalenone (ZEA), and T-2 toxin (T-2), as well as the quality of the wheat grains (mass per hectolitre, contents of protein, starch, ash and fat, particle size index (PSI), falling number, sedimentation, wet gluten content, and gluten index). The occurrence of Fusarium spp. fungi and the mycotoxins produced by them in the grains was mostly influenced by the harvesting time and meteorological conditions. The correlations between Fusarium species and the mycotoxins produced by them in the grains of spring wheat showed F. graminearum to be a dominant species, and as a result, higher concentrations of DON and ZEA were determined. The co-occurrence of all the three mycotoxins analyzed (deoxynivalenol, zearalenone, and T-2 toxin) was identified in wheat. In rainy years, a delay in harvesting resulted in diminished grain quality of spring wheat, as indicated by grain mass per hectolitre and falling number. Negative correlations were found in highly contaminated grains between mycotoxins (DON, ZEA, and T-2) and falling number and grain mass per hectolitre values.


2019 ◽  
Vol 132 (11) ◽  
pp. 3023-3033 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Richard D. Cuthbert ◽  
Ron E. Knox ◽  
Arti Singh ◽  
Heather L. Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document